scholarly journals Impact of Sea-State-Dependent Langmuir Turbulence on the Ocean Response to a Tropical Cyclone

2016 ◽  
Vol 144 (12) ◽  
pp. 4569-4590 ◽  
Author(s):  
Brandon G. Reichl ◽  
Isaac Ginis ◽  
Tetsu Hara ◽  
Biju Thomas ◽  
Tobias Kukulka ◽  
...  

Abstract Tropical cyclones are fueled by the air–sea heat flux, which is reduced when the ocean surface cools due to mixed layer deepening and upwelling. Wave-driven Langmuir turbulence can significantly modify these processes. This study investigates the impact of sea-state-dependent Langmuir turbulence on the three-dimensional ocean response to a tropical cyclone in coupled wave–ocean simulations. The Stokes drift is computed from the simulated wave spectrum using the WAVEWATCH III wave model and passed to the three-dimensional Princeton Ocean Model. The Langmuir turbulence impact is included in the vertical mixing of the ocean model by adding the Stokes drift to the shear of the vertical mean current and by including Langmuir turbulence enhancements to the K-profile parameterization (KPP) scheme. Results are assessed by comparing simulations with explicit (sea-state dependent) and implicit (independent of sea state) Langmuir turbulence parameterizations, as well as with turbulence driven by shear alone. The results demonstrate that the sea-state-dependent Langmuir turbulence parameterization significantly modifies the three-dimensional ocean response to a tropical cyclone. This is due to the reduction of upwelling and horizontal advection where the near-surface currents are reduced by Langmuir turbulence. The implicit scheme not only misses the impact of sea-state dependence on the surface cooling, but it also misrepresents the impact of the Langmuir turbulence on the Eulerian advection. This suggests that explicitly resolving the sea-state-dependent Langmuir turbulence will lead to increased accuracy in predicting the ocean response in coupled tropical cyclone–ocean models.

2014 ◽  
Vol 2014 (1) ◽  
pp. 901-918
Author(s):  
James A. Stronach ◽  
Aurelien Hospital

ABSTRACT Oil behavior and fate have been simulated extensively by several spill models. These simulations can be greatly enhanced by the use of a coupled three-dimensional model of currents and water properties to determine oil transport and weathering, both on the water surface and in the water column. Several physical and chemical processes such as vertical dispersion in response to wave action, resurfacing when waves die down, sinking through loss of volatiles and dissolution are essential in assessing the impact of an oil spill on the environment. Dissolution is especially important, considering the known toxicity of several of the constituents of liquid hydrocarbons. For this study, a three-dimensional hydrodynamic model of coastal British Columbia was coupled to an oil trajectory and weathering model in order to simulate the complete fate and behaviour of surface, shoreline-retained, dissolved, sunken and dispersed oil. Utilization of a three-dimensional model is the key to adequately modelling the transport of a spill in an estuarine region such as in the Strait of Georgia, B.C., where the distribution of currents and water properties is strongly affected by estuarine processes: the Fraser River enters at the surface and oceanic waters from the Pacific enter as a deep inflow. Three-dimensional currents and water properties were provided by the hydrodynamic model, H3D, a semi-implicit model using a staggered Arakawa grid and variable number of layers in the vertical direction to resolve near-surface processes. Waves were simulated using the wave model SWAN. Winds were obtained from the local network of coastal light stations and wind buoys. Stochastic modelling was conducted first, using only surface currents, to determine probabilistic maps of the oil trajectory on water and statistical results were extracted, such as the amount of shoreline oiled and the amount of oil evaporated, both for the ensemble of simulations constituting the stochastic simulation, as well as for any particular individual simulation. Deterministic scenarios were then selected and the fate of the oil, such as the dissolved and sunken fractions, was tracked over a 14 day period on the three-dimensional grid. This method has been used for environmental impact assessment and spill response planning.


2019 ◽  
Vol 49 (12) ◽  
pp. 3109-3126 ◽  
Author(s):  
Dong Wang ◽  
Tobias Kukulka ◽  
Brandon G. Reichl ◽  
Tetsu Hara ◽  
Isaac Ginis

AbstractThis study utilizes a large-eddy simulation (LES) approach to systematically assess the directional variability of wave-driven Langmuir turbulence (LT) in the ocean surface boundary layer (OSBL) under tropical cyclones (TCs). The Stokes drift vector, which drives LT through the Craik–Leibovich vortex force, is obtained through spectral wave simulations. LT’s direction is identified by horizontally elongated turbulent structures and objectively determined from horizontal autocorrelations of vertical velocities. In spite of a TC’s complex forcing with great wind and wave misalignments, this study finds that LT is approximately aligned with the wind. This is because the Reynolds stress and the depth-averaged Lagrangian shear (Eulerian plus Stokes drift shear) that are key in determining the LT intensity (determined by normalized depth-averaged vertical velocity variances) and direction are also approximately aligned with the wind relatively close to the surface. A scaling analysis of the momentum budget suggests that the Reynolds stress is approximately constant over a near-surface layer with predominant production of turbulent kinetic energy by Stokes drift shear, which is confirmed from the LES results. In this layer, Stokes drift shear, which dominates the Lagrangian shear, is aligned with the wind because of relatively short, wind-driven waves. On the contrary, Stokes drift exhibits considerable amount of misalignments with the wind. This wind–wave misalignment reduces LT intensity, consistent with a simple turbulent kinetic energy model. Our analysis shows that both the Reynolds stress and LT are aligned with the wind for different reasons: the former is dictated by the momentum budget, while the latter is controlled by wind-forced waves.


2014 ◽  
Vol 31 (8) ◽  
pp. 1771-1791 ◽  
Author(s):  
James A. Cummings ◽  
Ole Martin Smedstad

Abstract The impact of the assimilation of ocean observations on reducing global Hybrid Coordinate Ocean Model (HYCOM) 48-h forecast errors is presented. The assessment uses an adjoint-based data impact procedure that characterizes the forecast impact of every observation assimilated, and it allows the observation impacts to be partitioned by data type, geographic region, and vertical level. The impact cost function is the difference between HYCOM 48- and 72-h forecast errors computed for temperature and salinity at all model levels and grid points. It is shown that routine assimilation of large numbers of observations consistently reduces global HYCOM 48-h forecast errors for both temperature and salinity. The largest error reduction is due to the assimilation of temperature and salinity profiles from the tropical fixed mooring arrays, followed by Argo, expendable bathythermograph (XBT), and animal sensor data. On a per-observation basis, the most important global observing system is Argo. The beneficial impact of assimilating Argo temperature and salinity profiles extends to all depths sampled, with salinity impacts maximum at the surface and temperature impacts showing a subsurface maximum in the 100–200-m-depth range. The reduced impact of near-surface Argo temperature profile levels is due to the vertical covariances in the assimilation that extend the influence of the large number of sea surface temperature (SST) observations to the base of the mixed layer. Application of the adjoint-based data impact system to identify a data quality problem in a geostationary satellite SST observing system is also provided.


2016 ◽  
Vol 73 (9) ◽  
pp. 3345-3370 ◽  
Author(s):  
Konstantinos Menelaou ◽  
David A. Schecter ◽  
M. K. Yau

Abstract Intense atmospheric vortices such as tropical cyclones experience various asymmetric instabilities during their life cycles. This study investigates how vortex properties and ambient conditions determine the relative importance of different mechanisms that can simultaneously influence the growth of an asymmetric perturbation. The focus is on three-dimensional disturbances of barotropic vortices with nonmonotonic radial distributions of potential vorticity. The primary modes of instability are examined for Rossby numbers between 10 and 100 and Froude numbers in the broad neighborhood of unity. This parameter regime is deemed appropriate for tropical cyclone perturbations with vertical length scales ranging from the depth of the vortex to moderately smaller scales. At relatively small Froude numbers, the main cause of instability inferred from analysis typically involves the interaction of vortex Rossby waves with each other and/or critical-layer potential vorticity perturbations. As the Froude number increases from its lower bound, the main cause of instability transitions to inertia–gravity wave radiation. In some cases, the transition occurs abruptly at a critical point where a mode whose growth is driven almost entirely by radiation suddenly becomes dominant. In other cases, the transition is gradual and less direct as the fastest-growing mode continuously changes its structure. Examination of the angular pseudomomentum budget helps quantify the impact of radiation. The radiation-driven instabilities examined herein are shown to be quite fast and potentially relevant to real-world tropical cyclones. Their sensitivities to parameterized moisture and outer vorticity skirts are briefly addressed.


2010 ◽  
Vol 138 (6) ◽  
pp. 2074-2091 ◽  
Author(s):  
P. A. Sandery ◽  
G. B. Brassington ◽  
A. Craig ◽  
T. Pugh

Abstract This study investigates the impact of atmosphere–ocean coupling on predicted tropical cyclone (TC) intensity change and the ocean response in the Australian region. The coupled model comprises the Australian Bureau of Meteorology’s Tropical Cyclone Limited-Area Prediction System (TC-LAPS) and a regional version of the BLUElink ocean forecasting system. A series of case study forecasts are presented and the differences between coupled and uncoupled forecasts, operational forecasts, and posterior objective analyses are compared. A coupled model ensemble is also developed that uses different first-order approximations of the effects of surface waves on surface stress in an inertial coupling method. In each of the cases, the use of reanalyzed sea surface temperatures significantly improves the prediction of TC intensity change in the intensification phase. The results show that dynamic air–sea coupling has a modest impact on intensity in cases where SST cooling is significant and is likely to be important for predicting the rate of TC intensification, peak intensity, and deintensification. Results also show that there is a definite coupled signal and suggest inherent biases in the atmospheric model that could potentially be removed. With different parameterizations of surface wave effects, results show modest sensitivity in TC intensity of up to 10 hPa in minimum surface pressure; however, in some cases there was significant sensitivity in the predicted ocean response. The results also highlight the relative increased complexity of tropical cyclone prediction in the Australian region compared to other regions. In cases where the forecast TC track was reasonably skillful, there were improvements in the predicted ocean response with respect to observations compared to an ocean reanalysis.


2017 ◽  
Vol 145 (4) ◽  
pp. 1413-1426 ◽  
Author(s):  
Jun A. Zhang ◽  
Robert F. Rogers ◽  
Vijay Tallapragada

Abstract This study evaluates the impact of the modification of the vertical eddy diffusivity (Km) in the boundary layer parameterization of the Hurricane Weather Research and Forecasting (HWRF) Model on forecasts of tropical cyclone (TC) rapid intensification (RI). Composites of HWRF forecasts of Hurricanes Earl (2010) and Karl (2010) were compared for two versions of the planetary boundary layer (PBL) scheme in HWRF. The results show that using a smaller value of Km, in better agreement with observations, improves RI forecasts. The composite-mean, inner-core structures for the two sets of runs at the time of RI onset are compared with observational, theoretical, and modeling studies of RI to determine why the runs with reduced Km are more likely to undergo RI. It is found that the forecasts with reduced Km at the RI onset have a shallower boundary layer with stronger inflow, more unstable near-surface air outside the eyewall, stronger and deeper updrafts in regions farther inward from the radius of maximum wind (RMW), and stronger boundary layer convergence closer to the storm center, although the mean storm intensity (as measured by the 10-m winds) is similar for the two groups. Finally, it is found that the departure of the maximum tangential wind from the gradient wind at the eyewall, and the inward advection of angular momentum outside the eyewall, is much larger in the forecasts with reduced Km. This study emphasizes the important role of the boundary layer structure and dynamics in TC intensity change, supporting recent studies emphasizing boundary layer spinup mechanism, and recommends further improvement to the HWRF PBL physics.


2015 ◽  
Vol 72 (1) ◽  
pp. 120-140 ◽  
Author(s):  
Zhanhong Ma ◽  
Jianfang Fei ◽  
Xiaogang Huang ◽  
Xiaoping Cheng

Abstract The contributions of surface sensible heat fluxes (SHX) to the evolution of tropical cyclone (TC) intensity and structure are examined in this study by conducting cloud-resolving simulations. Results suggest that although the peak values of SHX could account for nearly 30% of those of the total surface latent and sensible heat fluxes, the impact of SHX on TC intensification is nonetheless not distinct. However, the TC size shows great sensitivity to the SHX that the storm is shrunk by over 20% after removing the SHX. A potential temperature budget analysis indicates that the adiabatic cooling accompanying the radial inflow is largely balanced by the transfer of sensible heat fluxes rather than the entrainment of subsiding air from aloft. If there is upward transfer of SHX from underlying ocean so that the near-surface potential temperature decreases upward, the SHX will play a vital role; instead, if the upward SHX are absent so that the potential temperature increases upward near the surface, the downward sensible heat fluxes become the dominant contributor to warm the inflow air. The changes in TC size are found to be primarily caused by the rainband activities. The SHX help maintain high convective available potential energy as well as the cold pool feature outside the eyewall, thus being crucial for the growth of outer rainbands. If without upward transport of SHX, the outer-rainband activities could be largely suppressed, thereby leading to a decrease of the TC size.


2008 ◽  
Vol 136 (7) ◽  
pp. 2576-2591 ◽  
Author(s):  
G. R. Halliwell ◽  
L. K. Shay ◽  
S. D. Jacob ◽  
O. M. Smedstad ◽  
E. W. Uhlhorn

Abstract To simulate tropical cyclone (TC) intensification, coupled ocean–atmosphere prediction models must realistically reproduce the magnitude and pattern of storm-forced sea surface temperature (SST) cooling. The potential for the ocean to support intensification depends on the thermal energy available to the storm, which in turn depends on both the temperature and thickness of the upper-ocean warm layer. The ocean heat content (OHC) is used as an index of this potential. Large differences in available thermal energy associated with energetic boundary currents and ocean eddies require their accurate initialization in ocean models. Two generations of the experimental U.S. Navy ocean nowcast–forecast system based on the Hybrid Coordinate Ocean Model (HYCOM) are evaluated for this purpose in the NW Caribbean Sea and Gulf of Mexico prior to Hurricanes Isidore and Lili (2002), Ivan (2004), and Katrina (2005). Evaluations are conducted by comparison to in situ measurements, the navy’s three-dimensional Modular Ocean Data Assimilation System (MODAS) temperature and salinity analyses, microwave satellite SST, and fields of OHC and 26°C isotherm depth derived from satellite altimetry. Both nowcast–forecast systems represent the position of important oceanographic features with reasonable accuracy. Initial fields provided by the first-generation product had a large upper-ocean cold bias because the nowcast was initialized from a biased older-model run. SST response in a free-running Isidore simulation is improved by using initial and boundary fields with reduced cold bias generated from a HYCOM nowcast that relaxed model fields to MODAS analyses. A new climatological initialization procedure used for the second-generation nowcast system tended to reduce the cold bias, but the nowcast still could not adequately reproduce anomalously warm conditions present before all storms within the first few months following nowcast initialization. The initial cold biases in both nowcast products tended to decrease with time. A realistic free-running HYCOM simulation of the ocean response to Ivan illustrates the critical importance of correctly initializing both warm-core rings and cold-core eddies to correctly simulate the magnitude and pattern of SST cooling.


2019 ◽  
Vol 49 (5) ◽  
pp. 1201-1228 ◽  
Author(s):  
Yun Qiu ◽  
Weiqing Han ◽  
Xinyu Lin ◽  
B. Jason West ◽  
Yuanlong Li ◽  
...  

AbstractThis study investigates the impact of salinity stratification on the upper-ocean response to a category 5 tropical cyclone, Phailin, that crossed the northern Bay of Bengal (BOB) from 8 to 13 October 2013. A drastic increase of up to 5.0 psu in sea surface salinity (SSS) was observed after Phailin’s passage, whereas a weak drop of below 0.5°C was observed in sea surface temperature (SST). Rightward biases were apparent in surface current and SSS but not evident in SST. Phailin-induced SST variations can be divided into the warming and cooling stages, corresponding to the existence of the thick barrier layer (BL) and temperature inversion before and erosion after Phailin’s passage, respectively. During the warming stage, SST increased due to strong entrainment of warmer water from the BL, which overcame the cooling induced by surface heat fluxes and horizontal advection. During the cooling stage, the entrainment and upwelling dominated the SST decrease. The preexistence of the BL, which reduced entrainment cooling by ~1.09°C day−1, significantly weakened the overall Phailin-induced SST cooling. The Hybrid Coordinate Ocean Model (HYCOM) experiments confirm the crucial roles of entrainment and upwelling in the Phailin-induced dramatic SSS increase and weak SST decrease. Analyses of upper-ocean stratification associated with 16 super TCs that occurred in the BOB during 1980–2015 show that intensifications of 13 TCs were associated with a thick isothermal layer, and 5 out of the 13 were associated with a thick BL. The calculation of TC intensity with and without considering subsurface temperature demonstrates the importance of large upper-ocean heat storage in TC growth.


Sign in / Sign up

Export Citation Format

Share Document