A Positive Feedback Process Related to the Rapid Development of an Extratropical Cyclone over the Kuroshio/Kuroshio Extension

2018 ◽  
Vol 146 (2) ◽  
pp. 417-433 ◽  
Author(s):  
Hidetaka Hirata ◽  
Ryuichi Kawamura ◽  
Masaya Kato ◽  
Taro Shinoda

Abstract The active roles of sensible heat supply from the Kuroshio/Kuroshio Extension in the rapid development of an extratropical cyclone, which occurred in the middle of January 2013, were examined by using a regional cloud-resolving model. In this study, a control experiment and three sensitivity experiments without sensible and latent heat fluxes from the warm currents were conducted. When the cyclone intensified, sensible heat fluxes from these currents become prominent around the cold conveyor belt (CCB) in the control run. Comparisons among the four runs revealed that the sensible heat supply facilitates deepening of the cyclone’s central pressure, CCB development, and enhanced latent heating over the bent-back front. The sensible heat supply enhances convectively unstable conditions within the atmospheric boundary layer along the CCB. The increased convective instability is released by the forced ascent associated with frontogenesis around the bent-back front, eventually promoting updraft and resultant latent heating. Additionally, the sensible heating leads to an increase in the water vapor content of the saturated air related to the CCB through an increase in the saturation mixing ratio. This increased water vapor content reinforces the moisture flux convergence at the bent-back front, contributing to the activation of latent heating. Previous research has proposed a positive feedback process between the CCB and latent heating over the bent-back front in terms of moisture supply from warm currents. Considering the above two effects of the sensible heat supply, this study revises the positive feedback process.

2015 ◽  
Vol 143 (10) ◽  
pp. 4126-4144 ◽  
Author(s):  
Hidetaka Hirata ◽  
Ryuichi Kawamura ◽  
Masaya Kato ◽  
Taro Shinoda

Abstract This study focused on an explosive cyclone migrating along the southern periphery of the Kuroshio/Kuroshio Extension in the middle of January 2013 and examined how those warm currents played an active role in the rapid development of the cyclone using a high-resolution coupled atmosphere–ocean regional model. The evolutions of surface fronts of the simulated cyclone resemble the Shapiro–Keyser model. At the time of the maximum deepening rate, strong mesoscale diabatic heating areas appear over the bent-back front and the warm front east of the cyclone center. Diabatic heating over the bent-back front and the eastern warm front is mainly induced by the condensation of moisture imported by the cold conveyor belt (CCB) and the warm conveyor belt (WCB), respectively. The dry air parcels transported by the CCB can receive large amounts of moisture from the warm currents, whereas the very humid air parcels transported by the WCB can hardly be modified by those currents. The well-organized nature of the CCB plays a key role not only in enhancing surface evaporation from the warm currents but also in importing the evaporated vapor into the bent-back front. The imported vapor converges at the bent-back front, leading to latent heat release. The latent heating facilitates the cyclone’s development through the production of positive potential vorticity in the lower troposphere. Its deepening can, in turn, reinforce the CCB. In the presence of a favorable synoptic-scale environment, such a positive feedback process can lead to the rapid intensification of a cyclone over warm currents.


2012 ◽  
Vol 25 (5) ◽  
pp. 1619-1634 ◽  
Author(s):  
Lu Wang ◽  
Tim Li ◽  
Tianjun Zhou

The structure and evolution characteristics of intraseasonal (20–100 day) variations of sea surface temperature (SST) and associated atmospheric and oceanic circulations over the Kuroshio Extension (KE) region during boreal summer are investigated, using satellite-based daily SST, observed precipitation data, and reanalysis data. The intraseasonal SST warming in the KE region is associated with an anomalous anticyclone in the overlying atmosphere, reduced precipitation, and northward and downward currents in the upper ocean. The corresponding atmospheric and oceanic fields during the SST cooling phase exhibit a mirror image with an opposite sign. A mixed layer heat budget analysis shows that the intraseasonal SST warming is primarily attributed to anomalous shortwave radiation and latent heat fluxes at the surface. The anomalous sensible heat flux and oceanic advection also have contributions, but with a much smaller magnitude. The SST warming caused by the atmospheric forcing further exerts a significant feedback to the atmosphere through triggering the atmospheric convective instability and precipitation anomalies. The so-induced heating leads to quick setup of a baroclinic response, followed by a baroclinic-to-barotropic transition. As a result, the atmospheric circulation changes from an anomalous anticyclone to an anomalous cyclone. This two-way interaction scenario suggests that the origin of the atmospheric intraseasonal oscillation over the KE region may partly arise from the local atmosphere–ocean interaction.


1989 ◽  
Vol 46 (1-2) ◽  
pp. 53-67 ◽  
Author(s):  
Shashi B. Verma ◽  
Joon Kim ◽  
Robert J. Clement

2020 ◽  
Vol 77 (9) ◽  
pp. 3211-3225
Author(s):  
Kristine F. Haualand ◽  
Thomas Spengler

Abstract The convoluted role of surface sensible and latent heat fluxes on moist baroclinic development demands a better understanding to disentangle their local and remote effects. Including diabatic effects in the Eady model, the direct effects of surface fluxes on the diabatic generation of eddy available potential energy as well as their indirect effects through modifications of the circulation and latent heating are investigated. It is shown that surface sensible heat fluxes have a minor impact, irrespective of their position and parameterization, while latent heating in the region equivalent to the warm conveyor belt is the dominant diabatic source for development. Downward surface sensible heat fluxes in proximity of the warm conveyor belt results in structural modifications that increase the conversion from basic-state available potential energy to eddy available potential energy, while concomitantly weakening the ascent and hence latent heating. The detrimental effects are easily compensated through provision of additional moisture into the warm conveyor belt. Upward surface heat fluxes in the cold sector, on the other hand, are detrimental to growth. When downward (upward) surface sensible heat fluxes are located below the equivalent of the warm conveyor belt, the diabatically induced PV anomaly at the bottom of the latent heating layer becomes dominant (less dominant). Shifting the downward surface sensible heat fluxes away from the warm conveyor belt results in substantial changes in the growth rate, latent heat release, low-level structure, and energetics, where the effect of surface sensible heat fluxes might even be beneficial.


2011 ◽  
Vol 24 (13) ◽  
pp. 3377-3401 ◽  
Author(s):  
Daisuke Hotta ◽  
Hisashi Nakamura

Abstract The relative importance between the sensible heat supply from the ocean and latent heating is assessed for the maintenance of near-surface mean baroclinicity in the major storm-track regions, by analyzing steady linear responses of a planetary wave model to individual components of zonally asymmetric thermal forcing taken from a global reanalysis dataset. The model experiments carried out separately for the North Atlantic, North Pacific, and south Indian Oceans indicate that distinct local maxima of near-surface baroclinicity observed along the storm tracks can be reinforced most efficiently as a response to the near-surface sensible heating. The result suggests the particular importance of the differential sensible heat supply from the ocean across an oceanic frontal zone for the efficient restoration of surface baroclinicity, which acts against the relaxing effect by poleward eddy heat transport, setting up conditions favorable for the recurrent development of transient eddies to anchor a storm track. Unlike what has been suggested, the corresponding reinforcement of the near-surface baroclinicity along a storm track as the response to the latent heating due either to cumulus convection or large-scale condensation is found less efficient. As is well known, poleward eddy heat flux convergence acts as the primary contributor to the reinforcement of the surface westerlies, especially in the core of a storm track. In its exit region, a substantial contribution to the reinforcement arises also from a planetary wave response to the sensible heat supply from the ocean. In contrast, the surface wind acceleration as a planetary wave response to the latent heating is found to contribute negatively to the maintenance of the surface westerlies along any of the major storm tracks.


2013 ◽  
Vol 43 (12) ◽  
pp. 2563-2570 ◽  
Author(s):  
Stuart P. Bishop ◽  
Frank O. Bryan

Abstract For the first time estimates of divergent eddy heat flux (DEHF) from a high-resolution (0.1°) simulation of the Parallel Ocean Program (POP) are compared with estimates made during the Kuroshio Extension System Study (KESS). The results from POP are in good agreement with KESS observations. POP captures the lateral and vertical structure of mean-to-eddy energy conversion rates, which range from 2 to 10 cm2 s−3. The dynamical mechanism of vertical coupling between the deep and upper ocean is the process responsible for DEHFs in POP and is in accordance with baroclinic instability observed in the Gulf Stream and Kuroshio Extension. Meridional eddy heat transport values are ~14% larger in POP at its maximum value. This is likely due to the more zonal path configuration in POP. The results from this study suggest that HR POP is a useful tool for estimating eddy statistics in the Kuroshio Extension region, and thereby provide guidance in the formulation and testing of eddy mixing parameterization schemes.


2011 ◽  
Vol 24 (24) ◽  
pp. 6551-6561 ◽  
Author(s):  
Shusaku Sugimoto ◽  
Kimio Hanawa

Abstract Variations of turbulent heat fluxes (sum of sensible and latent heat fluxes) in the North Pacific during 16 winters from December 1992/February 1993 to December 2007/February 2008 are investigated because the months from December to February correspond to the period having peak winter conditions in the atmosphere field. Turbulent heat fluxes are calculated from the bulk formula using daily variables [surface wind speed, surface air specific humidity, surface air temperature, and sea surface temperature (SST)] of the objectively analyzed air–sea flux (OAFlux) dataset and bulk coefficients based on the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) bulk flux algorithm 3.0. The winter turbulent heat fluxes over the Kuroshio–Oyashio Confluence Region (KOCR; 142°–150°E, 35°–40°N) have the largest temporal variances in the North Pacific. The relative contributions among observed variables in SST, surface air temperature, and surface wind speed causing turbulent heat flux variations in the KOCR are assessed quantitatively by performing simple experiments using combinations of two types of variables: raw daily data and daily climatological data. Results show that SST is primarily responsible for the turbulent heat flux variations—a huge amount of heat is released in the state of the positive SST anomaly. Using the datasets of satellite-derived SST and sea surface height with high spatial and temporal resolutions, it is found that the SST anomalies in the KOCR are formed through activities of the anticyclonic (warm) eddies detached northward from the Kuroshio Extension; SSTs take positive (negative) anomalies when more (less) anticyclonic eddies are distributed there, associated with a more convoluted (straight) Kuroshio Extension path.


2010 ◽  
Vol 7 (6) ◽  
pp. 8741-8780 ◽  
Author(s):  
S. Liu ◽  
Z. Xu ◽  
W. Wang ◽  
J. Bai ◽  
Z. Jia ◽  
...  

Abstract. We analyzed the seasonal variations of energy and water vapor fluxes over three different surfaces: irrigated cropland (Yingke, YK), alpine meadow (A'rou, AR), and spruce forest (Guantan, GT). The energy and water vapor fluxes were measured using eddy covariance systems (EC) and a large aperture scintillometer (LAS) in the Heihe River Basin, China, in 2008 and 2009. We also determined the source areas of the EC and LAS measurements with a footprint model for each site, and discussed the differences between the sensible heat fluxes measured by EC and LAS. The results show that the main EC source areas were within a radius of 250 m at all sites. The main source area for the LAS (with a path length of 2390 m) stretched along a path line approximately 2000 m long and 700 m wide. The surface characteristics in the source areas changed according to season and site, and there were characteristic seasonal variations in the energy and water vapor fluxes at all sites. The sensible heat flux was the main term of the energy budget during the dormant season. During the growing season, however, the latent heat flux dominated the energy budget, and an obvious "oasis effect" was observed at YK. The evapotranspiration (ET) at YK was larger than those at the other two sites. The monthly ET reached its peak in July at YK and in June at GT in both 2008 and 2009, while it reached its peak in August at AR in 2008 and in June in 2009. The sensible heat fluxes measured by LAS at AR were larger than those measured by EC at the same site. This difference seems to be caused by the energy imbalance of EC, the heterogeneity of the underlying surfaces, and the difference between the source areas of the LAS and EC measurements.


2016 ◽  
Vol 144 (10) ◽  
pp. 3553-3567 ◽  
Author(s):  
Hatsumi Nishikawa ◽  
Yoshihiro Tachibana ◽  
Yoshimi Kawai ◽  
Mayumi K. Yoshioka ◽  
Hisashi Nakamura

Simultaneous launches of radiosondes were conducted from three research vessels aligned meridionally across a sea surface temperature (SST) front on the flank of the Kuroshio Extension. The soundings carried out every 2 h over 5 days in early July 2012 provided a unique opportunity in capturing unambiguous data on anomalous easterly winds derived from a pronounced meridional SST gradient. The data indicate that a meridional contrast in surface heat fluxes from the underlying ocean enhanced the air temperature anomaly across the SST front, which was observed from the surface up to 300-m altitude. Correspondingly, high and low pressure anomalies that reached 800-m altitude formed on the north and south sides of the SST front, respectively. These temperature and pressure anomalies were maintained even during the passage of synoptic-scale disturbances. Although the free-tropospheric winds are overall westerly, winds below the 1000-m level were easterly due to geostrophic anomalies driven by the northward pressure gradient near the surface. During periods of the northerlies at the surface, especially over the warmer side of the SST front, the wind direction changed in a clockwise direction from 1500 m to the surface, in the opposite sense to the Ekman spiral. The vertical wind shear is apparently in the thermal wind balance ascribed to the meridional contrast in air temperature derived from the SST anomaly.


Sign in / Sign up

Export Citation Format

Share Document