scholarly journals On the Orographically Generated Low-Level Easterly Jet and Severe Downslope Storms of March 2006 over the Tacheng Basin of Northwest China

2018 ◽  
Vol 146 (6) ◽  
pp. 1667-1683 ◽  
Author(s):  
Guangxing Zhang ◽  
Da-Lin Zhang ◽  
Shufang Sun

A high-latitude low-level easterly jet (LLEJ) and downslope winds, causing severe dust storms over the Tacheng basin of northwestern China in March 2006 when the dust source regions were previously covered by snow with frozen soil, are studied in order to understand the associated meteorological conditions and the impact of complex topography on the generation of the LLEJ. Observational analyses show the development of a large-scale, geostrophically balanced, easterly flow associated with a northeastern high pressure and a southeastern low pressure system, accompanied by a westward-moving cold front with an intense inversion layer near the altitudes of mountain ridges. A high-resolution model simulation shows the generation of an LLEJ of near-typhoon strength, which peaked at about 500 m above the ground, as well as downslope windstorms with marked wave breakings and subsidence warming in the leeside surface layer, as the large-scale cold easterly flow moves through a constricting saddle pass and across a higher mountain ridge followed by a lower parallel ridge, respectively. The two different airstreams are merged to form an intense LLEJ of cold air, driven mostly by zonal pressure gradient force, and then the LLEJ moves along a zonally oriented mountain range to the north. Results indicate the importance of the lower ridge in enhancing the downslope winds associated with the higher ridge and the importance of the saddle pass in generating the LLEJ. We conclude that the intense downslope winds account for melting snow, warming and drying soils, and raising dust into the air that is then transported by the LLEJ, generated mostly through the saddle pass, into the far west of the basin.

10.1175/826.1 ◽  
2004 ◽  
Vol 19 (6) ◽  
pp. 970-992 ◽  
Author(s):  
Justin Sharp ◽  
Clifford F. Mass

Abstract This paper quantifies the impact of the Columbia Gorge on the weather and climate within and downstream of this mesoscale gap and examines the influence of synoptic-scale flow on gorge weather. Easterly winds occur more frequently and are stronger at stations such as Portland International Airport (KPDX) that are close to the western terminus of the gorge than at other lowland stations west of the Cascades. In the cool season, there is a strong correlation between east winds at KPDX and cooler temperatures in the Columbia Basin, within the gorge, and over the northern Willamette River valley. At least 56% of the annual snowfall, 70% of days with snowfall, and 90% of days with freezing rain at KPDX coincide with easterly gorge flow. Synoptic composites were created to identify the large-scale patterns leading to strong winds, snowfall, and freezing rain in the gorge. These composites showed that all gorge gap flow events are associated with a high-amplitude 500-mb ridge upstream of the Pacific Northwest, colder than normal 850-mb temperatures over the study region, and a substantial offshore sea level pressure gradient force between the interior and the northwest coast. However, the synoptic evolution varies for different kinds of gorge weather events. For example, the composite of the 500-mb field for freezing rain events features a split developing in the upstream ridge with zonal flow at midlatitudes, while for easterly gap winds accompanied by snowfall, there is an amplification of the ridge.


2019 ◽  
Vol 147 (11) ◽  
pp. 3935-3954 ◽  
Author(s):  
Daniel T. Dawson II ◽  
Brett Roberts ◽  
Ming Xue

Abstract In idealized, horizontally homogeneous, cloud model simulations of convective storms, the action of surface friction can substantially modify the near-ground environmental wind profile over time owing to the lack of a large-scale pressure gradient force to balance the frictional force together with the Coriolis force. This situation is undesirable for many applications where the impact of an unchanging environmental low-level wind shear on the simulated storm behavior is the focus of investigation, as it introduces additional variability in the experiment and accordingly complicates interpretation of the results. Partly for this reason, many researchers have opted to perform simulations with free-slip lower boundary conditions, which with appropriate boundary conditions allows for more precise control of the large-scale environmental wind profile. Yet, some recent studies have advocated important roles of surface friction in storm dynamics. Here, a simple method is introduced to effectively maintain any chosen environmental wind profile in idealized storm simulations in the presence of surface friction and both resolved and subgrid-scale turbulent mixing. The method is demonstrated through comparisons of simulations of a tornadic supercell with and without surface friction and with or without invoking the new method. The method is compared with similar techniques in the literature and potential extensions and other applications are discussed.


2012 ◽  
Vol 69 (4) ◽  
pp. 1232-1249 ◽  
Author(s):  
Danhong Fu ◽  
Xueliang Guo

Abstract The cloud-resolving fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) was used to study the cloud interactions and merging processes in the real case that generated a mesoscale convective system (MCS) on 23 August 2001 in the Beijing region. The merging processes can be grouped into three classes for the studied case: isolated nonprecipitating and precipitating cell merging, cloud cluster merging, and echo core or updraft core merging within cloud systems. The mechanisms responsible for the multiscale merging processes were investigated. The merging process between nonprecipitating cells and precipitating cells and that between clusters is initiated by forming an upper-level cloud bridge between two adjacent clouds due to upper-level radial outflows in one vigorous cloud. The cloud bridge is further enhanced by a favorable middle- and upper-level pressure gradient force directed from one cloud to its adjacent cloud by accelerating cloud particles being horizontally transported from the cloud to its adjacent cloud and induce the redistribution of condensational heating, which destabilizes the air at and below the cloud bridge and forms a favorable low-level pressure structure for low-level water vapor convergence and merging process. The merging of echo cores within the mesoscale cloud happens because of the interactions between low-level cold outflows associated with the downdrafts formed by these cores. Further sensitivity studies on the effects of topography and large-scale environmental winds suggest that the favorable pressure gradient force from one cloud to its adjacent cloud and stronger low-level water vapor convergence produced by the topographic lifting of large-scale low-level airflow determine further cloud merging processes over the mountain region.


2006 ◽  
Vol 134 (11) ◽  
pp. 3297-3316 ◽  
Author(s):  
Fang-Ching Chien ◽  
Ying-Hwa Kuo

Abstract This paper describes an observational and numerical study of an intense wintertime cold front that occurred in Taiwan on 8 January 1996. The front was associated with rope clouds at the leading edge, and a broad area of stratiform clouds behind. The front was blocked by the Central Mountain Range of Taiwan and divided into two sections on each side of the mountain range. As the cold air moved southward along the east coast, the increasing westward Coriolis force induced a landward acceleration. After the cold air piled up against the mountains, a coastal pressure ridge developed. The cold air damming yielded a geostrophic balance between the westward Coriolis force and the eastward component of the pressure gradient force in the x direction, and a southward acceleration in the y direction mainly caused by the southward pressure gradient force component. Over the Taiwan Strait, southward pressure gradient forces increased when the low-level stable cold air was confined over the Taiwan Strait, leading to a southward acceleration of the cold air. The formation of a windward ridge off the northwest coast of Taiwan contributed to a large southward acceleration, resulting in the development of a coastal jet. Over the Taiwan Strait, the cold air moved southward the fastest due to the channeling effect. The air parcels along the east coast of Taiwan experienced a downgradient acceleration from the cold air damming and advanced at a slower speed. Those traveling over the western plains and the nearshore coast advanced at the slowest speed. Two sensitivity runs, one without Taiwan’s topography (flat land only) and the other without Taiwan’s landmass, demonstrated the influences of Taiwan’s terrain and water–land contrast on the airflow. The run with no surface fluxes showed that the ocean modified the low-level cold air by supplying surface heat and moisture fluxes. This weakened the front, reduced low-level stability, and increased forced shallow convection (formation of rope clouds) at the leading edge.


2015 ◽  
Vol 28 (17) ◽  
pp. 6743-6762 ◽  
Author(s):  
Catherine M. Naud ◽  
Derek J. Posselt ◽  
Susan C. van den Heever

Abstract The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the postfrontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low-level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime postfrontal precipitation.


2019 ◽  
Author(s):  
Étienne Vignon ◽  
Olivier Traullé ◽  
Alexis Berne

Abstract. Eight years of high-resolution radiosonde data at nine Antarctic stations are analysed to provide the first large scale characterization of the fine scale vertical structure of the low troposphere up to 3 km of altitude over the coastal margins of East Antarctica. Radiosonde data show a large spatial variability of wind, temperature and humidity profiles, with different features between stations in katabatic regions (e.g., Dumont d'Urville and Mawson stations), stations over two ice shelves (Neumayer and Halley stations) and regions with complex orography (e.g., Mc Murdo). At Dumont d'Urville, Mawson and Davis stations, the yearly median wind speed profiles exhibit a clear low-level katabatic jet. During precipitation events, the low-level flow generally remains of continental origin and its speed is even reinforced due to the increase in the continent- ocean pressure gradient. Meanwhile, the relative humidity profiles show a dry low troposphere, suggesting the occurence of low-level sublimation of precipitation in katabatic regions but such a phenomenon does not appreciably occur over the ice-shelves near Halley and Neumayer. Although ERA-Interim and ERA5 reanalyses assimilate radiosoundings at most stations considered here, substantial – and sometimes large – low-level wind and humidity biases are revealed but ERA5 shows overall better performances. A free simulation with the regional model Polar WRF (at a 35-km resolution) over the entire continent shows too strong and too shallow near-surface jets in katabatic regions especially in winter. This may be a consequence of an understimated coastal cold air bump and associated sea-continent pressure gradient force due to the coarse 35 km resolution of the Polar WRF simulation. Beyond documenting the vertical structure of the low troposphere over coastal East-Antarctica, this study gives insights into the reliability and accuracy of two major reanalysis products in this region on the Earth and it raises the difficulty of modeling the low-level flow over the margins of the ice sheet with a state-of-the-art climate model.


2015 ◽  
Vol 28 (5) ◽  
pp. 1977-1996 ◽  
Author(s):  
Isla R. Simpson ◽  
Richard Seager ◽  
Tiffany A. Shaw ◽  
Mingfang Ting

Abstract In summer, the atmospheric circulation over the Mediterranean is characterized by localized intense subsidence and low-level northerlies over the central to eastern portion of the basin. Here, simulations with the Community Atmosphere Model, version 5 are used to investigate the influence of the elevated terrain of North Africa and the Middle East on this summertime circulation. This builds on previous work that recognized a role for North African topography in localizing the Mediterranean subsidence. By flattening the two regions of elevated terrain in the model, it is demonstrated that, while they both conspire to produce about 30% of the summertime subsidence, contrary to previous work, the mountains of the Middle East dominate in this topographic contribution by far. This topography, consisting primarily of the Zagros mountain range, alters the circulation throughout the depth of the troposphere over the Mediterranean and farther east. The model results suggest that about 20% of the Mediterranean summertime moisture deficit can be attributed to this mountain-induced circulation. This topography, therefore, plays an important role in the climate of the Mediterranean and the large-scale circulation over the rest of Eurasia during the summer. Further stationary wave modeling reveals that the mountain influence is produced via mechanical forcing of the flow. The greatest influence of the topography occurs when the low-level incident flow is easterly, as happens during the summer, primarily because of the presence of condensational heating over Asia. During other seasons, when the low-level incident flow is westerly, the influence of Middle East topography on the Mediterranean is negligible.


2007 ◽  
Vol 64 (4) ◽  
pp. 1365-1378 ◽  
Author(s):  
Erik N. Rasmussen ◽  
Jerry M. Straka

Abstract The life cycle of the 2 June 1995 Dimmitt, Texas, tornado cyclone, observed during the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX), is described. The tornado cyclone here is defined as a significantly axisymmetric flow larger than the visible tornado and characterized by increasing angular momentum with increasing radius. Its life cycle included three phases with somewhat differing evolution of angular momentum, herein called intensifying, transition, and weakening. During the intensifying stage, the funnel and debris cloud gradually increased in size. The azimuthally averaged secondary circulation of the larger-scale tornado cyclone, as determined using high-resolution single-Doppler data obtained by a mobile radar, was primarily inward and upward, consistent with the presence of a wall cloud outside the tornado. The azimuthally averaged angular momentum increased monotonically away from the tornado, so inward advection allowed the angular momentum to increase slowly with time in part of the tornado cyclone. During the transition phase, downdrafts began to occur within the tornado cyclone. The transport of angular momentum by the secondary circulation nearly was offset by eddy flux convergence of angular momentum so that the azimuthally averaged angular momentum tendency was only weakly negative at most radii. The tornado was visually impressive during this stage, featuring a 400-m diameter debris cloud extending to cloud base, while the surrounding wall cloud shrank and eroded. During the weakening phase, the funnel and debris cloud gradually shrank, and the funnel went through a rope stage prior to disappearing. The weakening phase was characterized by extensive downdrafts at all radii outside the tornado, and large-scale near-ground outflow as observed by mobile mesonet systems in a portion of the tornado cyclone. The secondary circulation acted to transport smaller angular momentum downward from aloft, and outward along the ground. All terms of the angular momentum budget became negative throughout most of the low-level (0–800-m AGL) tornado cyclone during the weakening phase. Several hypotheses for this evolution are evaluated, including changes in water loading in the tornado cyclone, cooling of the near-ground air, and the distribution of tangential velocity with height with its concomitant influence on the nonhydrostatic vertical pressure gradient force.


2008 ◽  
Vol 47 (7) ◽  
pp. 2039-2057 ◽  
Author(s):  
Shiyuan Zhong ◽  
C. David Whiteman

Abstract The characteristics of well-developed downslope winds observed by tethered balloon soundings at multiple locations over a low-angle slope in the Salt Lake Valley are studied using the Regional Atmospheric Modeling System (RAMS). The model successfully simulated the key properties of the observed wind and temperature structure and evolution and provided insight into the forcing mechanisms. The results show that, although the slope angle is only 1.6°, the buoyancy force associated with the local temperature perturbation caused by nocturnal cooling of the slope surface is capable of producing the unusually strong and deep downslope winds observed by the tethersondes. The hypothesis that the flow is produced locally by the temperature deficit is further confirmed by analysis of the momentum budget that indicates a very small contribution from advection to the downslope mass flux. The analysis also reveals the importance of the along-slope pressure gradient force, which has been neglected by some previous investigators. On an isolated slope, the pressure gradient force, which develops as the downslope-flow layer deepens with downslope distance, is important mostly in the upper part of the downslope wind layer where it counterbalances the buoyancy force. On a slope in a valley, the pressure gradient force interacts with the valley inversion to produce intermittency in the downslope jet and may also significantly slow the flow as the inversion strengthens during the night. The simulations for two different observational nights indicate that the maximum downslope wind speed is sensitive to ambient stability, with near-neutral ambient stability yielding a stronger downslope jet than does a more stable ambient atmosphere. Sensitivity studies suggest that an increase in down-valley winds leads to a decrease in the maximum downslope wind speed and an increase in the thickness of the downslope wind layer. An increase in slope roughness, on the other hand, increases the height of the downslope jet but has little effect on other properties. The downslope wind is stronger over a gentle 1.6° slope than over a much steeper slope of 11°, mainly because of the combination of the stronger buoyancy and weaker pressure gradient over the gentle slope.


2007 ◽  
Vol 8 (4) ◽  
pp. 790-804 ◽  
Author(s):  
Jinwon Kim ◽  
Hyun-Suk Kang

Abstract To understand the influence of the Sierra Nevada on the water cycle in California the authors have analyzed low-level winds and water vapor fluxes upstream of the mountain range in regional climate model simulations. In a low Froude number (Fr) regime, the upstream low-level wind disturbances are characterized by the rapid weakening of the crosswinds and the appearance of a stagnation point over the southwestern foothills. The weakening of the low-level inflow is accompanied by the development of along-ridge winds that take the form of a barrier jet over the western slope of the mountain range. Such upstream wind disturbances are either weak or nonexistent in a high-Fr case. A critical Fr (Frc) of 0.35 inferred in this study is within the range of those suggested in previous observational and numerical studies. The depth of the blocked layer estimated from the along-ridge wind profile upstream of the northern Sierra Nevada corresponds to Frc between 0.3 and 0.45 as well. Associated with these low-level wind disturbances are significant low-level southerly moisture fluxes over the western slope and foothills of the Sierra Nevada in the low-Fr case, which result in significant exports of moisture from the southern Sierra Nevada to the northern region. This along-ridge low-level water vapor transport by blocking-induced barrier jets in a low-Fr condition may result in a strong north–south precipitation gradient over the Sierra Nevada.


Sign in / Sign up

Export Citation Format

Share Document