scholarly journals Influence of Subseasonal Variability on the Diurnal Cycle of Precipitation on a Mountainous Island: The Case of New Caledonia

2019 ◽  
Vol 148 (1) ◽  
pp. 333-351 ◽  
Author(s):  
Damien Specq ◽  
Gilles Bellon ◽  
Alexandre Peltier ◽  
Jérôme Lefèvre ◽  
Christophe Menkes

Abstract The relationship between the large-scale intraseasonal variability, synoptic wind regimes, and the local daily variability of precipitation over the main island of New Caledonia (southwest tropical Pacific) is investigated with a focus on the austral summer wet season (November–April). The average diurnal cycle of precipitation over the island is characterized by a sharp afternoon maximum around 1600 local time, with significant differences between the windward east coast, the leeward west coast, and the mountain range. The afternoon peak is related to the afternoon sea-breeze circulation and to the diurnal cycle of convection over land. In general, its magnitude follows the same evolution as the daily mean. In agreement with past studies, a clear modulation of the Madden–Julian oscillation (MJO) on both the diurnal cycle of precipitation and the probability of occurrence of four robust wind regimes can be identified in the New Caledonia region during the wet season. From the evidence that there is a qualitative correspondence between the effects of both the MJO phases and the wind regimes on features in the diurnal cycle of precipitation, a simple model is proposed to inspect the MJO forcing mediated by wind regimes on the diurnal variability of rain. The complete decomposition of the MJO impact shows that the modulation of diurnal cycle by the MJO relies on complex interactions between the MJO and synoptic winds that involve both large-scale MJO convective anomalies and MJO-induced modification of wind patterns.

2006 ◽  
Vol 134 (10) ◽  
pp. 2688-2701 ◽  
Author(s):  
L. Gustavo Pereira ◽  
Steven A. Rutledge

Abstract The characteristics of shallow and deep convection during the Tropical Rainfall Measuring Mission/Large-Scale Biosphere–Atmosphere Experiment in Amazonia (TRMM/LBA) and the Eastern Pacific Investigation of Climate Processes in the Coupled Ocean–Atmosphere System (EPIC) are evaluated in this study. Using high-quality radar data collected during these two tropical field experiments, the reflectivity profiles, rain rates, fraction of convective area, and fraction of rainfall volume in each region are examined. This study focuses on the diurnal cycle of shallow and deep convection for the identified wind regimes in both regions. The easterly phase in TRMM/LBA and the northerly wind regime in EPIC were associated with the strongest convection, indicated by larger rain rates, higher reflectivities, and deeper convective cores compared to the westerly phase in TRMM/LBA and the southerly regime in EPIC. The diurnal cycle results indicated that convection initiates in the morning and peaks in the afternoon during TRMM/LBA, whereas in the east Pacific the diurnal cycle of convection is very dependent on the wind regime. Deep convection in the northerly regime peaks around midnight, nearly 6 h before its southerly regime counterpart. Moreover, the northerly regime of EPIC was dominated by convective rainfall, whereas the southerly regime was dominated by stratiform rainfall. The diurnal variability was more pronounced during TRMM/LBA than in EPIC. Shallow convection was associated with 10% and 3% of precipitation during TRMM/LBA and EPIC, respectively.


2007 ◽  
Vol 8 (4) ◽  
pp. 738-757 ◽  
Author(s):  
Song Yang ◽  
S-H. Yoo ◽  
R. Yang ◽  
K. E. Mitchell ◽  
H. van den Dool ◽  
...  

Abstract This study employs the NCEP Eta Regional Climate Model to investigate the response of the model’s seasonal simulations of summer precipitation to high-frequency variability of soil moisture. Specifically, it focuses on the response of model precipitation and temperature over the U.S. Midwest and Southeast to imposed changes in the diurnal and synoptic variability of soil moisture in 1988 and 1993. High-frequency variability of soil moisture increases (decreases) precipitation in the 1988 drought (1993 flood) year in the central and southern-tier states, except along the Gulf Coast, but causes smaller changes in precipitation along the northern-tier states. The diurnal variability and synoptic variability of soil moisture produce similar patterns of precipitation change, indicating the importance of the diurnal cycle of land surface process. The increase (decrease) in precipitation is generally accompanied by a decrease (increase) in surface and lower-tropospheric temperatures, and the changes in precipitation and temperature are attributed to both the local effect of evaporation feedback and the remote influence of large-scale water vapor transport. The precipitation increase and temperature decrease in 1988 are accompanied by an increase in local evaporation and, more importantly, by an increase in the large-scale water vapor convergence into the Midwest and Southeast. Analogous but opposite-sign behavior occurs in 1993 (compared to 1988) in changes in precipitation, temperature, soil moisture, evaporation, and large-scale water vapor transport. Results also indicate that, in regions where the model simulates the diurnal cycle of soil moisture reasonably well, including this diurnal cycle in the simulations improves model performance. However, no notable improvement in model precipitation can be found in regions where the model fails to realistically simulate the diurnal variability of soil moisture.


2021 ◽  
Author(s):  
Hyung-Ju Park ◽  
Kwang-Yul Kim

Abstract Mechanism of the strong diurnal cycle of precipitation over the Kuroshio Current (KC) during mid-June is investigated, when the climatological location of the Meiyu-Baiu front overlaps the KC. Heating from the KC intensifies in the morning when the temperature difference between the sea surface and the surface air (TDF) maximizes. The diurnal cycle of precipitation, on the other hand, peaks in the afternoon, consistent with previous studies. It is revealed that convective precipitation (CP) due to convective instability is in phase with TDF, whereas large-scale precipitation (LSP) caused by the cross-frontal circulation matures later. Intensified convective instability via enhanced heating from the KC in the morning hours (03–12 LST) increases the mean amount of CP as well as the probability of stronger CP. Surface wind convergence is also strengthened during the morning hours and helps sustain the convection. The diurnal cycle of LSP, which peaks in the afternoon hours (12–15 LST), covaries with the intensity of the Meiyu-Baiu front and the assocaited cross-frontal circulation. The wind convergence and deformation anomalies associated with the intensified thermal heating over the KC during the morning hours intensifies the frontogenesis function, which leads to the maximization of the frontal intensity in the afternoon. The direct contribution of diabatic heating to the frontogenesis is relatively weak.


2017 ◽  
Author(s):  
Jose A. Marengo ◽  
Gilberto F. Fisch ◽  
Lincoln M. Alves ◽  
Natanael V. Sousa ◽  
Rong Fu ◽  
...  

Abstract. The onset and demise of the rainy season in Amazonia are assessed in this study using meteorological data from the Go Amazon experiment, with focus is on the 2014–15 rainy season. In addition, global reanalyses are also used to identify changes in circulation leading to the establishment of the rainy season in the region. Our results show that the onset occurred in January 2015, 2–3 pentads later than normal, and the rainy season during austral summer of 2015 exhibited several periods with consecutive dry days in both Manacapuru and Manaus, which are not common for the wet season, and thus determining below normal precipitation. The onset of the rainy season has been strongly associated with changes in large-scale weather conditions in the region due to the effect of the MJO. Regional thermodynamic indices (CAPE, CIN) and the height of the PBL did not present a significant difference between the onset and demise of wet season 2015. This suggests that local changes such the regional thermodynamic characteristics may have not influenced the onset of the rainy season. Variability of the large-scale circulation was responsible for regional convection and rainfall changes in Amazonia during the austral summer of 2014–15.


2004 ◽  
Vol 34 (4) ◽  
pp. 593-603 ◽  
Author(s):  
José A. Marengo ◽  
Gilberto Fisch ◽  
Carlos Morales ◽  
Iria Vendrame ◽  
Paulo C. Dias

The TRMM-LBA field campaign was held during the austral summer of 1999 in southwestern Amazonia. Among the major objectives, was the identification and description of the diurnal variability of rainfall in the region, associated with the different rain producing weather systems that occurred during the January-February season. By using a network of 40 digital rain gauges implemented in the state of Rondônia, and together with observations and analyses of circulation and convection, it was possible to identify details of the diurnal cycle of rainfall and the associated rainfall mechanisms. Rainfall episodes were characterized by regimes of "low-level easterly" and "westerly" winds in the context of the large-scale circulation. The westerly regime is related to an enhanced South Atlantic Convergence Zone (SACZ) and an intense and/or wide Low Level Jet (LLJ) east of the Andes, which can extend eastward towards Rondônia, even though some westerly regime episodes also show a LLJ that remains close to the foothill of the Andes. The easterly regime is related to easterly propagating systems (e.g. squall-lines) with possible weakened or less frequent LLJs and a suppressed SACZ. Diurnal variability of rainfall during westerly surface wind regime shows a characteristic maximum at late afternoon followed by a relatively weaker second maximum at early evening (2100 Local Standard Time LST). The easterly regime composite shows an early morning maximum followed by an even stronger maximum in the afternoon.


2014 ◽  
Vol 27 (14) ◽  
pp. 5517-5537 ◽  
Author(s):  
Guixing Chen ◽  
Toshiki Iwasaki ◽  
Huiling Qin ◽  
Weiming Sha

Abstract Four recent reanalyses—the 55-yr Japanese Reanalysis Project (JRA-55), Interim ECWMF Re-Analysis (ERA-I), NCEP Climate Forecast System Reanalysis (CFSR), and NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA)—are assessed to clarify their quality in representing the diurnal cycle over East Asia. They are found to present similar patterns/structure and summer progress of the mean wind diurnal cycle, whereas they exhibit some differences in diurnal amplitude, particularly for the low-level meridional wind. An evaluation with intense soundings suggests that the amplitude difference mainly results from the diurnal variation of mean bias that differs among reanalyses. The root-mean-square (RMS) error is found to have a diurnal variation more evident in CFSR and MERRA than that in JRA-55 and ERA-I, which strongly affects the representation of the varying diurnal amplitude at the peak hours of RMS error. Compared with satellite-derived rainfall, the four reanalyses are shown to reproduce well the rainfall diurnal cycle over East Asia in terms of large-scale terrain contrast, summer progress, and interannual variability. JRA-55 even presents a long-term increase of morning rainfall percentage over the east China plain over the past four decades, consistent with rain gauge observations. The four reanalyses exhibit some considerable discrepancies at regional scale; JRA-55 gives the best capture of the rainfall diurnal cycle over the Tibetan Plateau and the eastward propagation to the eastern lees. These results suggest that new reanalyses are potentially applicable for studying the large-scale diurnal variability over East Asia, whereas their different preferences, especially at regional scale, should be of concern in data application.


2006 ◽  
Vol 19 (20) ◽  
pp. 5190-5226 ◽  
Author(s):  
Song Yang ◽  
Eric A. Smith

Abstract The behavior and various controls of diurnal variability in tropical–subtropical rainfall are investigated using Tropical Rainfall Measuring Mission (TRMM) precipitation measurements retrieved from the three level-2 TRMM standard profile algorithms for the 1998 annual cycle. Results show that diurnal variability characteristics of precipitation are consistent for all three algorithms, providing assurance that TRMM retrievals are producing consistent estimates of rainfall variability. As anticipated, most ocean areas exhibit more rainfall at night, while over most land areas, rainfall peaks during daytime; however, important exceptions are noted. The dominant feature of the oceanic diurnal cycle is a rainfall maximum in late-evening–early-morning (LE–EM) hours, while over land the dominant maximum occurs in the mid- to late afternoon (MLA). In conjunction with these maxima are pronounced seasonal variations of the diurnal amplitudes. Amplitude analysis shows that the diurnal pattern and its seasonal evolution are closely related to the rainfall accumulation pattern and its seasonal evolution. In addition, the horizontal distribution of diurnal variability indicates that for oceanic rainfall, there is a secondary MLA maximum coexisting with the LE–EM maximum at latitudes dominated by large-scale convergence and deep convection. Analogously, there is a preponderancy for an LE–EM maximum over land coexisting with the stronger MLA maximum, although it is not evident that this secondary continental feature is closely associated with the large-scale circulation. Neither of the secondary maxima exhibit phase behavior that can be considered semidiurnal in nature. Diurnal rainfall variability over the ocean associated with large-scale convection is clearly an integral component of the general circulation. Phase analysis reveals differences in regional and seasonal features of the diurnal cycle, indicating that underlying forcing mechanisms differ from place to place. This is underscored by the appearance of secondary ocean maxima in the presence of large-scale convection, along with other important features. Among these, there are clear-cut differences between the diurnal variability of seasonal rainfall over the mid-Pacific and Indian Ocean Basins. The mid-Pacific exhibits double maxima in spring and winter but only LE–EM maxima in summer and autumn, while the Indian Ocean exhibits double maxima in spring and summer and only an LE–EM maximum in autumn and winter. There are also evident daytime maxima within the major large-scale marine stratocumulus regions off the west coasts of continents. The study concludes with a discussion concerning how the observational evidence either supports or repudiates possible forcing mechanisms that have been suggested to explain diurnal rainfall variability.


2017 ◽  
Vol 17 (12) ◽  
pp. 7671-7681 ◽  
Author(s):  
Jose A. Marengo ◽  
Gilberto F. Fisch ◽  
Lincoln M. Alves ◽  
Natanael V. Sousa ◽  
Rong Fu ◽  
...  

Abstract. The onset and demise of the rainy season in Amazonia are assessed in this study using meteorological data from the GoAmazon experiment, with a focus on the 2014–2015 rainy season. In addition, global reanalyses are also used to identify changes in circulation leading to the establishment of the rainy season in the region. Our results show that the onset occurred in January 2015, 2–3 pentads later than normal, and the rainy season during the austral summer of 2015 contained several periods with consecutive dry days in both Manacapuru and Manaus, which are not common for the wet season, and resulted in below-normal precipitation. The onset of the rainy season has been strongly associated with changes in large-scale weather conditions in the region due to the effect of the Madden–Julian Oscillation (MJO). Regional thermodynamic indices and the height of the boundary layer did not present a significant difference between the onset and demise of the wet season of 2015. This suggests that local changes, such as those in the regional thermodynamic characteristics, may not have influenced its onset. Thus, variability of the large-scale circulation was responsible for regional convection and rainfall changes in Amazonia during the austral summer of 2014–2015.


2021 ◽  
pp. 1-52
Author(s):  
Simon C. Peatman ◽  
Juliane Schwendike ◽  
Cathryn E. Birch ◽  
John H. Marsham ◽  
Adrian J. Matthews ◽  
...  

AbstractThe canonical view of the Maritime Continent (MC) diurnal cycle is deep convection occurring over land during the afternoon and evening, tending to propagate offshore overnight. However, there is considerable day-to-day variability in the convection, and the mechanism of the offshore propagation is not well understood. We test the hypothesis that large-scale drivers such as ENSO, the MJO and equatorial waves, through their modification of the local circulation, can modify the direction or strength of the propagation, or prevent the deep convection from triggering in the first place. Taking a local-to-large scale approach we use in situ observations, satellite data and reanalyses for five MC coastal regions, and show that the occurrence of the diurnal convection and its offshore propagation is closely tied to coastal wind regimes we define using the k-means cluster algorithm. Strong prevailing onshore winds are associated with a suppressed diurnal cycle of precipitation; while prevailing offshore winds are associated with an active diurnal cycle, offshore propagation of convection and a greater risk of extreme rainfall. ENSO, the MJO, equatorial Rossby waves and westward mixed Rossby-gravity waves have varying levels of control over which coastal wind regime occurs, and therefore on precipitation, depending on the MC coastline in question. The large-scale drivers associated with dry and wet regimes are summarised for each location as a reference for forecasters.


Sign in / Sign up

Export Citation Format

Share Document