scholarly journals Compressible EULAG dynamical core in COSMO: convective-scale Alpine weather forecasts

Author(s):  
Michał Z. Ziemiański ◽  
Damian K. Wójcik ◽  
Bogdan Rosa ◽  
Zbigniew P. Piotrowski

AbstractThis paper presents the semi-implicit compressible EULAG as a new dynamical core for convective-scale numerical weather prediction. The core is implemented within the infrastructure of the operational model of the Consortium for Small Scale Modeling (COSMO), forming the NWP COSMO-EULAG model (CE). This regional high-resolution implementation of the dynamical core complements its global implementation in the Finite-Volume Module of ECMWF’s Integrated Forecasting System. The paper documents the first operational-like application of the dynamical core for realistic weather forecasts. After discussing the formulation of the core and its coupling with the host model, the paper considers several high-resolution prognostic experiments over complex Alpine orography. Standard verification experiments examine the sensitivity of the CE forecast to the choice of the advection routine and assess the forecast skills against those of the default COSMO Runge-Kutta dynamical core at 2.2 km grid size showing a general improvement. The skills are also compared using satellite observations for a weak-flow convective Alpine weather case-study, showing favorable results. Additional validation of the new CE framework for partly convection-resolving forecasts using 1.1 km, 0.55 km, 0.22 km, and 0.1 km grids, designed to challenge its numerics and test the dynamics-physics coupling, demonstrates its high robustness in simulating multi-phase flows over complex mountain terrain, with slopes reaching 85 degrees, and the flow’s realistic representation.

Author(s):  
Djordje Romanic

Tornadoes and downbursts cause extreme wind speeds that often present a threat to human safety, structures, and the environment. While the accuracy of weather forecasts has increased manifold over the past several decades, the current numerical weather prediction models are still not capable of explicitly resolving tornadoes and small-scale downbursts in their operational applications. This chapter describes some of the physical (e.g., tornadogenesis and downburst formation), mathematical (e.g., chaos theory), and computational (e.g., grid resolution) challenges that meteorologists currently face in tornado and downburst forecasting.


2018 ◽  
Vol 99 (5) ◽  
pp. 1027-1040 ◽  
Author(s):  
D. R. Jackson ◽  
A. Gadian ◽  
N. P. Hindley ◽  
L. Hoffmann ◽  
J. Hughes ◽  
...  

AbstractGravity waves (GWs) play an important role in many atmospheric processes. However, the observation-based understanding of GWs is limited, and representing them in numerical models is difficult. Recent studies show that small islands can be intense sources of GWs, with climatologically significant effects on the atmospheric circulation. South Georgia, in the South Atlantic, is a notable source of such “small island” waves. GWs are usually too small scale to be resolved by current models, so their effects are represented approximately using resolved model fields (parameterization). However, the small-island waves are not well represented by such parameterizations, and the explicit representation of GWs in very-high-resolution models is still in its infancy. Steep islands such as South Georgia are also known to generate low-level wakes, affecting the flow hundreds of kilometers downwind. These wakes are also poorly represented in models.We present results from the South Georgia Wave Experiment (SG-WEX) for 5 July 2015. Analysis of GWs from satellite observations is augmented by radiosonde observations made from South Georgia. Simulations were also made using high-resolution configurations of the Met Office Unified Model (UM). Comparison with observations indicates that the UM performs well for this case, with realistic representation of GW patterns and low-level wakes. Examination of a longer simulation period suggests that the wakes generally are well represented by the model. The realism of these simulations suggests they can be used to develop parameterizations for use at coarser model resolutions.


2019 ◽  
Vol 76 (4) ◽  
pp. 1077-1091 ◽  
Author(s):  
Fuqing Zhang ◽  
Y. Qiang Sun ◽  
Linus Magnusson ◽  
Roberto Buizza ◽  
Shian-Jiann Lin ◽  
...  

Abstract Understanding the predictability limit of day-to-day weather phenomena such as midlatitude winter storms and summer monsoonal rainstorms is crucial to numerical weather prediction (NWP). This predictability limit is studied using unprecedented high-resolution global models with ensemble experiments of the European Centre for Medium-Range Weather Forecasts (ECMWF; 9-km operational model) and identical-twin experiments of the U.S. Next-Generation Global Prediction System (NGGPS; 3 km). Results suggest that the predictability limit for midlatitude weather may indeed exist and is intrinsic to the underlying dynamical system and instabilities even if the forecast model and the initial conditions are nearly perfect. Currently, a skillful forecast lead time of midlatitude instantaneous weather is around 10 days, which serves as the practical predictability limit. Reducing the current-day initial-condition uncertainty by an order of magnitude extends the deterministic forecast lead times of day-to-day weather by up to 5 days, with much less scope for improving prediction of small-scale phenomena like thunderstorms. Achieving this additional predictability limit can have enormous socioeconomic benefits but requires coordinated efforts by the entire community to design better numerical weather models, to improve observations, and to make better use of observations with advanced data assimilation and computing techniques.


2016 ◽  
Vol 31 (1) ◽  
pp. 255-271 ◽  
Author(s):  
Ryan A. Sobash ◽  
Craig S. Schwartz ◽  
Glen S. Romine ◽  
Kathryn R. Fossell ◽  
Morris L. Weisman

Abstract Probabilistic severe weather forecasts for days 1 and 2 were produced using 30-member convection-allowing ensemble forecasts initialized by an ensemble Kalman filter data assimilation system during a 32-day period coinciding with the Mesoscale Predictability Experiment. The forecasts were generated by smoothing the locations where model output indicated extreme values of updraft helicity, a surrogate for rotating thunderstorms in model output. The day 1 surrogate severe probability forecasts (SSPFs) produced skillful and reliable predictions of severe weather during this period, after an appropriate calibration of the smoothing kernel. The ensemble SSPFs exceeded the skill of SSPFs derived from two benchmark deterministic forecasts, with the largest differences occurring on the mesoscale, while all SSPFs produced similar forecasts on synoptic scales. While the deterministic SSPFs often overforecasted high probabilities, the ensemble improved the reliability of these probabilities, at the expense of producing fewer high-probability values. For the day 2 period, the SSPFs provided competitive guidance compared to the day 1 forecasts, although additional smoothing was needed to produce the same level of skill, reducing the forecast sharpness. Results were similar using 10 ensemble members, suggesting value exists when running a smaller ensemble if computational resources are limited. Finally, the SSPFs were compared to severe weather risk areas identified in Storm Prediction Center (SPC) convective outlooks. The SSPF skill was comparable to the SPC outlook skill in identifying regions where severe weather would occur, although performance varied on a day-to-day basis.


Author(s):  
Xiang-Yu Huang ◽  
Dale Barker ◽  
Stuart Webster ◽  
Anurag Dipankar ◽  
Adrian Lock ◽  
...  

Extreme rainfall is one of the primary meteorological hazards in Singapore, as well as elsewhere in the deep tropics, and it can lead to significant local flooding. Since 2013, the Meteorological Service Singapore (MSS) and the United Kingdom Met Office (UKMO) have been collaborating to develop a convective-scale Numerical Weather Prediction (NWP) system, called SINGV. Its primary aim is to provide improved weather forecasts for Singapore and the surrounding region, with a focus on improved short-range prediction of localized heavy rainfall. This paper provides an overview of the SINGV development, the latest NWP capabilities at MSS and some key results of evaluation. The paper describes science advances relevant to the development of any km-scale NWP suitable for the deep tropics and provides some insights into the impact of local data assimilation and utility of ensemble predictions.


2021 ◽  
Author(s):  
Alberto Caldas-Alvarez ◽  
Samiro Khodayar ◽  
Peter Knippertz

Abstract. Heavy precipitation is one of the most devastating weather extremes in the western Mediterranean region. Our capacity to prevent negative impacts from such extreme events requires advancements in numerical weather prediction, data assimilation and new observation techniques. In this paper we investigate the impact of two state-of-the-art data sets with very high resolution, Global Positioning System-Zenith Total Delays (GPS-ZTD) with a 10 min temporal resolution and radiosondes with ~700 levels, on the representation of convective precipitation in nudging experiments. Specifically, we investigate whether the high temporal resolution, quality, and coverage of GPS-ZTDs can outweigh their lack of vertical information or if radiosonde profiles are more valuable despite their scarce coverage and low temporal resolution (24 h to 6 h). The study focuses on the Intensive Observation Period 6 (IOP6) of the Hydrological Cycle in the Mediterranean eXperiment (HyMeX; 24 September 2012). This event is selected due to its severity (100 mm/12 h), the availability of observations for nudging and validation, and the large observation impact found in preliminary sensitivity experiments. We systematically compare simulations performed with the COnsortium for Small scale MOdelling (COSMO) model assimilating GPS, high- and low vertical resolution radiosoundings in model resolutions of 7 km, 2.8 km and 500 m. The results show that the additional GPS and radiosonde observations cannot compensate errors in the model dynamics and physics. In this regard the reference COSMO runs have an atmospheric moisture wet bias prior to precipitation onset but a negative bias in rainfall, indicative of deficiencies in the numerics and physics, unable to convert the moisture excess into sufficient precipitation. Nudging GPS and high-resolution soundings corrects atmospheric humidity, but even further reduces total precipitation. This case study also demonstrates the potential impact of individual observations in highly unstable environments. We show that assimilating a low-resolution sounding from Nimes (southern France) while precipitation is taking place induces a 40 % increase in precipitation during the subsequent three hours. This precipitation increase is brought about by the moistening of the 700  hPa level (7.5 g kg−1) upstream of the main precipitating systems, reducing the entrainment of dry air above the boundary layer. The moist layer was missed by GPS observations and high-resolution soundings alike, pointing to the importance of profile information and timing. However, assimilating GPS was beneficial for simulating the temporal evolution of precipitation. Finally, regarding the scale dependency, no resolution is particularly sensitive to a specific observation type, however the 2.8 km run has overall better scores, possibly as this is the optimally tuned operational version of COSMO. In follow-up experiments the Icosahedral Nonhydrostatic Model (ICON) will be investigated for this case study to assert whether its numerical and physics updates, compared to its predecessor COSMO, are able to improve the quality of the simulations.


2020 ◽  
Vol 148 (10) ◽  
pp. 4247-4265 ◽  
Author(s):  
Domingo Muñoz-Esparza ◽  
Robert D. Sharman ◽  
Stanley B. Trier

AbstractMesoscale numerical weather prediction (NWP) models are routinely exercised at kilometer-scale horizontal grid spacings (Δx). Such fine grids will usually allow at least partial resolution of small-scale gravity waves and turbulence in the upper troposphere and lower stratosphere (UTLS). However, planetary boundary layer (PBL) parameterization schemes used with these NWP model simulations typically apply explicit subgrid-scale vertical diffusion throughout the entire vertical extent of the domain, an effect that cannot be ignored. By way of an example case of observed widespread turbulence over the U.S. Great Plains, we demonstrate that the PBL scheme’s mixing in NWP model simulations of Δx = 1 km can have significant effects on the onset and characteristics of the modeled UTLS gravity waves. Qualitatively, PBL scheme diffusion is found to affect not only background conditions responsible for UTLS wave activity, but also to control the local vertical mixing that triggers or hinders the onset and propagation of these waves. Comparisons are made to a reference large-eddy simulation with Δx = 250 m to statistically quantify these effects. A significant and systematic overestimation of resolved vertical velocities, wave-scale fluxes, and kinetic energy is uncovered in the 1-km simulations, both in clear-air and in-cloud conditions. These findings are especially relevant for upper-level gravity wave and turbulence simulations using high-resolution kilometer-scale NWP models.


2020 ◽  
Author(s):  
Rianne Giesen ◽  
Ana Trindade ◽  
Marcos Portabella ◽  
Ad Stoffelen

<p>The ocean surface wind plays an essential role in the exchange of heat, gases and momentum at the atmosphere-ocean interface. It is therefore crucial to accurately represent this wind forcing in physical ocean model simulations. Scatterometers provide high-resolution ocean surface wind observations, but have limited spatial and temporal coverage. On the other hand, numerical weather prediction (NWP) model wind fields have better coverage in time and space, but do not resolve the small-scale variability in the air-sea fluxes. In addition, Belmonte Rivas and Stoffelen (2019) documented substantial systematic error in global NWP fields on both small and large scales, using scatterometer observations as a reference.</p><p>Trindade et al. (2019) combined the strong points of scatterometer observations and atmospheric model wind fields into ERA*, a new ocean wind forcing product. ERA* uses temporally-averaged differences between geolocated scatterometer wind data and European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis fields to correct for persistent local NWP wind vector biases. Verified against independent observations, ERA* reduced the variance of differences by 20% with respect to the uncorrected NWP fields. As ERA* has a high potential for improving ocean model forcing in the CMEMS Model Forecasting Centre (MFC) products, it is a candidate for a future CMEMS Level 4 (L4) wind product. We present the ongoing work to further improve the ERA* product and invite potential users to discuss their L4 product requirements.</p><p>References:</p><p>Belmonte Rivas, M. and A. Stoffelen (2019): <em>Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT</em>, Ocean Sci., 15, 831–852, doi: 10.5194/os-15-831-2019.</p><p>Trindade, A., M. Portabella, A. Stoffelen, W. Lin and A. Verhoef (2019), <em>ERAstar: A High-Resolution Ocean Forcing Product</em>, IEEE Trans. Geosci. Remote Sens., 1-11, doi: 10.1109/TGRS.2019.2946019.</p>


2020 ◽  
Author(s):  
Yihui Zhou ◽  
Yi Zhang ◽  
Zhuang Liu ◽  
Jian Li ◽  
Rucong Yu

<p>High-resolution numerical weather and climate models have a great advantage in both prediction and simulation for their ability to resolve small-scale systems, but suffer from expensive computational cost. The aim of this study is to explore a cost-effective variable-resolution modeling approach within a newly developed global nonhydrostatic dynamical core based on an unstructured mesh. We provide a size-controllable formulation of hierarchical refinement mode by an adapted density function for more realistic high-resolution simulations. The dynamical core is tested regarding both dry and moist atmosphere to evaluate variable-resolution simulations against quasi-uniform ones. In baroclinic wave tests, the variable-resolution model, which owns much less grid points, captures a comparable fine-scale fluid structure with the high-resolution quasi-uniform one in the refinement region. In the coarse region, the result of the variable-resolution simulation matches that of the low-resolution quasi-uniform one, which contributes to smaller global errors of the variable-resolution simulation. A series of sensitivity tests regarding parameters of the hierarchical refinement mode validate the high stability of the variable-resolution model to preserve the intensity and vertical structure of tropical cyclones moving through the transition zone. The variable-resolution modeling lays a strong foundation for potential improvement of regional high-resolution simulations.</p>


2016 ◽  
Vol 17 (10) ◽  
pp. 2591-2614 ◽  
Author(s):  
Vincent Vionnet ◽  
Ingrid Dombrowski-Etchevers ◽  
Matthieu Lafaysse ◽  
Louis Quéno ◽  
Yann Seity ◽  
...  

Abstract Numerical weather prediction (NWP) systems operating at kilometer scale in mountainous terrain offer appealing prospects for forecasting the state of snowpack in support of avalanche hazard warning, water resources assessment, and flood forecasting. In this study, daily forecasts of the NWP system Applications of Research to Operations at Mesoscale (AROME) at 2.5-km grid spacing over the French Alps were considered for four consecutive winters (from 2010/11 to 2013/14). AROME forecasts were first evaluated against ground-based measurements of air temperature, humidity, wind speed, incoming radiation, and precipitation. This evaluation shows a cold bias at high altitude partially related to an underestimation of cloud cover influencing incoming radiative fluxes. AROME seasonal snowfall was also compared against output from the Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige (SAFRAN) specially developed for alpine terrain. This comparison reveals that there are regions of significant difference between the two, especially at high elevation, and possible causes for these differences are discussed. Finally, AROME forecasts and SAFRAN reanalysis have been used to drive the snowpack model Surface Externalisée (SURFEX)/Crocus (SC) and to simulate the snowpack evolution over a 2.5-km grid covering the French Alps during four winters. When evaluated at the experimental site of Col de Porte, both simulations show good agreement with measurements of snow depth and snow water equivalent. At the scale of the French Alps, AROME-SC exhibits an overall positive bias, with the largest positive bias found in the northern and central French Alps. This study constitutes the first step toward the development of a distributed snowpack forecasting system using AROME.


Sign in / Sign up

Export Citation Format

Share Document