scholarly journals Comparison between GOES-12 Overshooting-Top Detections, WSR-88D Radar Reflectivity, and Severe Storm Reports

2012 ◽  
Vol 27 (3) ◽  
pp. 684-699 ◽  
Author(s):  
Richard Dworak ◽  
Kristopher Bedka ◽  
Jason Brunner ◽  
Wayne Feltz

Abstract Studies have found that convective storms with overshooting-top (OT) signatures in weather satellite imagery are often associated with hazardous weather, such as heavy rainfall, tornadoes, damaging winds, and large hail. An objective satellite-based OT detection product has been developed using 11-μm infrared window (IRW) channel brightness temperatures (BTs) for the upcoming R series of the Geostationary Operational Environmental Satellite (GOES-R) Advanced Baseline Imager. In this study, this method is applied to GOES-12 IRW data and the OT detections are compared with radar data, severe storm reports, and severe weather warnings over the eastern United States. The goals of this study are to 1) improve forecaster understanding of satellite OT signatures relative to commonly available radar products, 2) assess OT detection product accuracy, and 3) evaluate the utility of an OT detection product for diagnosing hazardous convective storms. The coevolution of radar-derived products and satellite OT signatures indicates that an OT often corresponds with the highest radar echo top and reflectivity maximum aloft. Validation of OT detections relative to composite reflectivity indicates an algorithm false-alarm ratio of 16%, with OTs within the coldest IRW BT range (<200 K) being the most accurate. A significant IRW BT minimum typically present with an OT is more often associated with heavy precipitation than a region with a spatially uniform BT. Severe weather was often associated with OT detections during the warm season (April–September) and over the southern United States. The severe weather to OT relationship increased by 15% when GOES operated in rapid-scan mode, showing the importance of high temporal resolution for observing and detecting rapidly evolving cloud-top features. Comparison of the earliest OT detection associated with a severe weather report showed that 75% of the cases occur before severe weather and that 42% of collocated severe weather reports had either an OT detected before a severe weather warning or no warning issued at all. The relationships between satellite OT signatures, severe weather, and heavy rainfall shown in this paper suggest that 1) when an OT is detected, the particular storm is likely producing heavy rainfall and/or possibly severe weather; 2) an objective OT detection product can be used to increase situational awareness and forecaster confidence that a given storm is severe; and 3) this product may be particularly useful in regions with insufficient radar coverage.

2020 ◽  
Vol 33 (23) ◽  
pp. 10239-10261 ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Pieter Groenemeijer ◽  
Roger Edwards ◽  
Harold E. Brooks ◽  
...  

AbstractAs lightning-detection records lengthen and the efficiency of severe weather reporting increases, more accurate climatologies of convective hazards can be constructed. In this study we aggregate flashes from the National Lightning Detection Network (NLDN) and Arrival Time Difference long-range lightning detection network (ATDnet) with severe weather reports from the European Severe Weather Database (ESWD) and Storm Prediction Center (SPC) Storm Data on a common grid of 0.25° and 1-h steps. Each year approximately 75–200 thunderstorm hours occur over the southwestern, central, and eastern United States, with a peak over Florida (200–250 h). The activity over the majority of Europe ranges from 15 to 100 h, with peaks over Italy and mountains (Pyrenees, Alps, Carpathians, Dinaric Alps; 100–150 h). The highest convective activity over continental Europe occurs during summer and over the Mediterranean during autumn. The United States peak for tornadoes and large hail reports is in spring, preceding the maximum of lightning and severe wind reports by 1–2 months. Convective hazards occur typically in the late afternoon, with the exception of the Midwest and Great Plains, where mesoscale convective systems shift the peak lightning threat to the night. The severe wind threat is delayed by 1–2 h compared to hail and tornadoes. The fraction of nocturnal lightning over land ranges from 15% to 30% with the lowest values observed over Florida and mountains (~10%). Wintertime lightning shares the highest fraction of severe weather. Compared to Europe, extreme events are considerably more frequent over the United States, with maximum activity over the Great Plains. However, the threat over Europe should not be underestimated, as severe weather outbreaks with damaging winds, very large hail, and significant tornadoes occasionally occur over densely populated areas.


2013 ◽  
Vol 141 (5) ◽  
pp. 1648-1672 ◽  
Author(s):  
Kelly M. Keene ◽  
Russ S. Schumacher

Abstract The accurate prediction of warm-season convective systems and the heavy rainfall and severe weather associated with them remains a challenge for numerical weather prediction models. This study looks at a circumstance in which quasi-stationary convection forms perpendicular to, and above the cold-pool behind strong bow echoes. The authors refer to this phenomenon as a “bow and arrow” because on radar imagery the two convective lines resemble an archer’s bow and arrow. The “arrow” can produce heavy rainfall and severe weather, extending over hundreds of kilometers. These events are challenging to forecast because they require an accurate forecast of earlier convection and the effects of that convection on the environment. In this study, basic characteristics of 14 events are documented, and observations of 4 events are presented to identify common environmental conditions prior to the development of the back-building convection. Simulations of three cases using the Weather Research and Forecasting Model (WRF) are analyzed in an attempt to understand the mechanisms responsible for initiating and maintaining the convective line. In each case, strong southwesterly flow (inducing warm air advection and gradual isentropic lifting), in addition to directional and speed convergence into the convective arrow appear to contribute to initiation of convection. The linear orientation of the arrow may be associated with a combination of increased wind speeds and horizontal shear in the arrow region. When these ingredients are combined with thermodynamic instability, there appears to be a greater possibility of formation and maintenance of a convective arrow behind a bow echo.


2002 ◽  
Vol 45 (2) ◽  
pp. 121-125 ◽  
Author(s):  
W. Schmid ◽  
S. Mecklenburg ◽  
J. Joss

Methodologies for risk forecasts of severe weather hardly exist on the scale of nowcasting (0–3 hours). Here we discuss short-term risk forecasts of heavy precipitation associated with local thunderstorms. We use COTREC/RainCast: a procedure to extrapolate radar images into the near future. An error density function is defined using the estimated error of location of the extrapolated radar patterns. The radar forecast is folded (“smeared”) with the density function, leading to a probability distribution of radar intensities. An algorithm to convert the radar intensities into values of precipitation intensity provides the desired probability (or risk) of heavy rainfall at any position within the considered window in space and time. We discuss, as an example, a flood event from summer 2000.


2020 ◽  
Vol 35 (2) ◽  
pp. 635-656 ◽  
Author(s):  
Matthew J. Bunkers ◽  
Steven R. Fleegel ◽  
Thomas Grafenauer ◽  
Chauncy J. Schultz ◽  
Philip N. Schumacher

Abstract The objective of this study is to provide guidance on when hail and/or wind is climatologically most likely (temporally and spatially) based on the ratio of severe hail reports to severe wind reports, which can be used by National Weather Forecast (NWS) forecasters when issuing severe convective warnings. Accordingly, a climatology of reported hail-to-wind ratios (i.e., number of hail reports divided by the number of wind reports) for observed severe convective storms was derived using U.S. storm reports from 1955 to 2017. Owing to several temporal changes in reporting and warning procedures, the 1996–2017 period was chosen for spatiotemporal analyses, yielding 265 691 hail and 294 449 wind reports. The most notable changes in hail–wind ratios occurred around 1996 as the NWS modernized and deployed new radars (leading to more hail reports relative to wind) and in 2010 when the severe hail criterion increased nationwide (leading to more wind reports relative to hail). One key finding is that hail–wind ratios are maximized (i.e., relatively more hail than wind) during the late morning through midafternoon and in the spring (March–May), with geographical maxima over the central United States and complex/elevated terrain. Otherwise, minimum ratios occur overnight, during the late summer (July–August) as well as November–December, and over the eastern United States. While the results reflect reporting biases (e.g., fewer wind than hail reports in low-population areas but more wind reports where mesonets are available), meteorological factors such as convective mode and cool spring versus warm summer environments also appear associated with the hail–wind ratio climatology.


2010 ◽  
Vol 25 (4) ◽  
pp. 1082-1102 ◽  
Author(s):  
Peter C. Banacos ◽  
Michael L. Ekster

Abstract The occurrence of rare but significant severe weather events associated with elevated mixed-layer (EML) air in the northeastern United States is investigated herein. A total of 447 convective event days with one or more significant severe weather report [where significant is defined as hail 2 in. (5.1 cm) in diameter or greater, a convective gust of 65 kt (33 m s−1) or greater, and/or a tornado of F2 or greater intensity] were identified from 1970 through 2006 during the warm season (1 May–30 September). Of these, 34 event days (7.6%) were associated with identifiable EML air in regional rawinsondes preceding the event. Taken with two other noteworthy events in 1953 and 1969, a total of 36 significant severe weather events associated with EML air were studied via composite and trajectory analysis. Though a small percentage of the total, these 36 events compose a noteworthy list of historically significant derechos and tornadic events to affect the northeastern United States. It is demonstrated that plumes of EML air emanating from the Intermountain West in subsiding, anticyclonically curved flows can reinforce the capping inversion and maintain the integrity of the EML across the central United States over a few days. The EML plume can ultimately become entrained into a moderately fast westerly to northwesterly midtropospheric flow allowing for the plume’s advection into the northeastern United States. Resultant thermodynamic conditions in the convective storm environment are similar to those more typically observed closer to the EML source region in the Great Plains of the United States. In addition to composite and trajectory analysis, two case studies are employed to demonstrate salient and evolutionary aspects of the EML in such events. A lapse rate tendency equation is explored to put EML advection in context with other processes affecting lapse rate.


Author(s):  
Ruoyun Ma ◽  
Jianhua Sun ◽  
Xinlin Yang

AbstractThe present work established a 7-year climatology of the initiation, decay, and morphology of severe convective storms (SCSs) during the warm seasons (May–September) of 2011–2018 (except 2014) over North China. This was achieved by using severe weather reports, precipitation observations, and composite Doppler radar reflectivity data. A total of 371 SCSs were identified. SCSs primarily initiated around noon with the highest frequency over the high terrain of Mount Taihang, and they mostly decayed over the plains at night. The storm morphologies were classified into three types of cellular storms (individual cells, clusters of cells, and broken lines), six types of linear systems (convective lines with no stratiform, with trailing stratiform, leading stratiform, parallel stratiform, embedded lines, and bow echoes), and nonlinear systems. Three types of severe convective weather, namely, short-duration heavy rainfall, hail, and thunderstorm high winds associated with these morphologies were investigated. Nonlinear systems were the most frequent morphology, followed by clusters of cells. Convective lines with trailing stratiform were the most frequent linear morphology. A total of 1,429 morphology samples from the 371 SCSs were found to be responsible for 15,966 severe convective weather reports. Linear (nonlinear) systems produced the most short-duration heavy rainfall (hail and thunderstorm high wind) reports. Bow echos were most efficient in producing both short-duration heavy rainfall and thunderstorm high wind reports whereas broken lines had the highest efficiency for hail production. The results in the present study are helpful for local forecasters to better anticipate the storm types and associated hazardous weather.


2012 ◽  
Vol 27 (2) ◽  
pp. 345-361 ◽  
Author(s):  
Stephen M. Jessup ◽  
Stephen J. Colucci

Abstract Heavy precipitation and flash flooding have been extensively studied in the central United States, but less so in the Northeast. This study examines 187 warm-season flash flood events identified in Storm Data to better understand the structure of the precipitation systems that cause flash flooding in the Northeast. Based on the organization and movement of these systems on radar, the events are classified into one of four categories—back-building, linear, multiple, and other/size—and then further classified into subtypes for each category. Eight of these subtypes were not previously recognized in the literature. The back-building events were the most common, followed by the multiple, other/size, and linear types. The linear event types appear to produce flash flooding less commonly in the Northeast than in other regions. In general, the subtypes producing the highest precipitation estimates are those whose structures are most conducive to a long duration of sustained moderate to heavy rainfall. The event types were found to differ from those in the central United States in that the events were more often found to be more disorganized in the Northeast. One event type in particular, back-building with merging features, while not more disorganized than the previously recognized event types, offers promise for improved forecasting because its radar signature makes the duration of sustained heavy precipitation potentially easier to predict.


2010 ◽  
Vol 25 (4) ◽  
pp. 1103-1122 ◽  
Author(s):  
Russ S. Schumacher ◽  
Christopher A. Davis

Abstract This study examines widespread heavy rainfall over 5-day periods in the central and eastern United States. First, a climatology is presented that identifies events in which more than 100 mm of precipitation fell over more than 800 000 km2 in 5 days. This climatology shows that such events are most common in the cool season near the Gulf of Mexico coast and are rare in the warm season. Then, the focus turns to the years 2007 and 2008, when nine such events occurred in the United States, all of them leading to flooding. Three of these were associated with warm-season convection, three took place in the cool season, and three were caused by landfalling tropical cyclones. Global ensemble forecasts from the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System are used to assess forecast skill and uncertainty for these nine events, and to identify the types of weather systems associated with their relative levels of skill and uncertainty. Objective verification metrics and subjective examination are used to determine how far in advance the ensemble identified the threat of widespread heavy rains. Specific conclusions depend on the rainfall threshold and the metric chosen, but, in general, predictive skill was highest for rainfall associated with tropical cyclones and lowest for the warm-season cases. In almost all cases, the ensemble provides very skillful 5-day forecasts when initialized at the beginning of the event. In some of the events—particularly the tropical cyclones and strong baroclinic cyclones—the ensemble still shows considerable skill in 96–216-h precipitation forecasts. In other cases, however, the skill drops off much more rapidly as lead time increases. In particular, forecast skill at long lead times was the lowest and spread was the largest in the two cases associated with meso-α-scale to synoptic-scale vortices that were cut off from the primary upper-level jet. In these cases, it appears that when the vortex is present in the initial conditions, the resulting precipitation forecasts are quite accurate and certain, but at longer lead times when the model is required to both develop and correctly evolve the vortex, forecast quality is low and uncertainty is large. These results motivate further investigation of the events that were poorly predicted.


2014 ◽  
Vol 27 (13) ◽  
pp. 5036-5055 ◽  
Author(s):  
Hailan Wang ◽  
Siegfried Schubert

The dominant pattern of SST variability in the Pacific during its cold phase produces pronounced precipitation deficits over the continental United States throughout the annual cycle. This study investigates the observed physical and dynamical processes through which the cold Pacific pattern affects U.S. precipitation, particularly the causes for the peak dry impacts in fall, as well as the nature of the differences between the summer and fall responses. Results show that the peak precipitation deficit over the United States during fall is primarily due to reduced atmospheric moisture transport from the Gulf of Mexico into the central and eastern United States and secondarily a reduction in local evaporation from land–atmosphere feedback. The former is associated with a strong and systematic low-level northeasterly flow anomaly over the southeastern United States that counteracts the northwest branch of the climatological North Atlantic subtropical high. The above northeasterly anomaly is maintained by both diabatic heating anomalies in the nearby intra-American seas and diabatic cooling anomalies in the tropical Pacific. In contrast, the modest summertime precipitation deficit over the central United States is mainly an intensification of the local dry anomaly in the preceding spring from local land–atmosphere feedback; the rather weak and disorganized atmospheric circulation anomalies over and to the south of the United States make little contribution. An evaluation of the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) AGCM simulations shows it to be deficient in simulating the warm season tropical convection responses over the intra-American seas to the cold Pacific pattern and thereby the precipitation responses over the United States, a problem that appears to be common to many AGCMs.


Sign in / Sign up

Export Citation Format

Share Document