Stress-Strain Response of the Human Vocal Ligament

1995 ◽  
Vol 104 (7) ◽  
pp. 563-569 ◽  
Author(s):  
Young B. Min ◽  
Ingo R. Titze ◽  
Fariborz Alipour-Haghighi

The longitudinal elastic properties of the human vocal ligament were quantified by stress-strain measurements and by modeling the response mathematically. Human ligaments were obtained from surgery and autopsy cases. They were dissected, mounted, and stretched with a dual-servo ergometer to measure force versus elongation and to convert the results into stress and strain. To calculate a longitudinal Young's modulus, the stress-strain curves were fitted with polynomial and exponential functions and differentiated. Young's modulus was separately defined in the low- and high-strain regions. The mean Young's modulus for the low-strain region was 33.1 ± 10.4 kilopascals. In the high-strain region, A and B parameters for an exponential fit were 1.4 ± 1.0 and 9.6 ± 1.2 kilopascals, respectively. The stress-strain and Young's modulus curves showed the typical hysteresis and nonlinearity seen previously in other vocal fold tissues (muscle and mucosa), but the nonlinearity was most profound for the vocal ligament.

2010 ◽  
Vol 638-642 ◽  
pp. 3793-3798
Author(s):  
Wolfgang H. Müller ◽  
Holger Worrack ◽  
Jens Sterthaus

The fabrication of microelectronic and micromechanical devices leads to the use of only very small amounts of matter, which can behave quite differently than the corresponding bulk. Clearly, the materials will age and it is important to gather information on the (changing) material characteristics. In particular, Young’s modulus, yield stress, and hardness are of great interest. Moreover, a complete stress-strain curve is desirable for a detailed material characterization and simulation of a component, e.g., by Finite Elements (FE). However, since the amount of matter is so small and it is the intention to describe its behavior as realistic as possible, miniature tests are used for measuring the mechanical properties. In this paper two miniature tests are presented for this purpose, a mini-uniaxial-tension-test and a nanoindenter experiment. In the tensile test the axial load is prescribed and the corresponding extension of the specimen length is recorded, both of which determines the stress-strain- curve directly. The stress-strain curves are analyzed by assuming a non-linear relationship between stress and strain of the Ramberg-Osgood type and by fitting the corresponding parameters to the experimental data (obtained for various microelectronic solders) by means of a non-linear optimization routine. For a detailed analysis of very local mechanical properties nanoindentation is used, resulting primarily in load vs. indentation-depth data. According to the procedure of Oliver and Pharr this data can be used to obtain hardness and Young’s modulus but not a complete stress-strain curve, at least not directly. In order to obtain such a stress-strain-curve, the nanoindentation experiment is combined with FE and the coefficients involved in the corresponding constitutive equations for stress and strain are obtained by means of the inverse method. The stress-strain curves from nanoindentation and tensile tests are compared for two mate-rials (aluminum and steel). Differences are explained in terms of the locality of the measurement. Finally, material properties at elevated temperature are of particular interest in order to characterize the materials even more completely. We describe the setup for hot stage nanoindentation tests in context with first results for selected materials.


1885 ◽  
Vol 38 (235-238) ◽  
pp. 488-500 ◽  

It has been proved by Wertheim, whose results have been verified by myself, that if e be taken to denote “Young’s Modulus,” and α the mean distance between the centres of any two adjacent molecules of a solid body, e x α 7 is, in the case of most metals, approximately a constant.


Author(s):  
Nathaniel Neubert ◽  
Emily Evans ◽  
John Dallon

Abstract While much study has been dedicated to investigating biopolymers' stress-strain response at low strain levels, little research has been done to investigate the linear region of biopolymers' stress-strain response and how the microstructure affects it. We propose a mathematical model of fibrous networks which reproduces qualitative features of collagen gel's stress-strain response and provides insight into the key features which impact the Young's Modulus of similar fibrous tissues. This model analyzes the relationship of the Young's Modulus of the lattice to internodal fiber length, number of connection points or nodes per unit area, and average number of connections to each node. Our results show that fiber length, nodal density, and level of connectivity each uniquely impact the Young's Modulus of the lattice. Furthermore, our model indicates that the Young's Modulus of a lattice can be estimated using the effective resistance of the network, a graph theory technique that measures distances across a network. Our model thus provides insight into how the organization of fibers in a biopolymer impact its linear Young's Modulus.


Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 67
Author(s):  
Song Joo Lee ◽  
Yong-Eun Cho ◽  
Kyung-Hyun Kim ◽  
Deukhee Lee

Knowing the material properties of the musculoskeletal soft tissue could be important to develop rehabilitation therapy and surgical procedures. However, there is a lack of devices and information on the viscoelastic properties of soft tissues around the lumbar spine. The goal of this study was to develop a portable quantifying device for providing strain and stress curves of muscles and ligaments around the lumbar spine at various stretching speeds. Each sample was conditioned and applied for 20 repeatable cyclic 5 mm stretch-and-relax trials in the direction and perpendicular direction of the fiber at 2, 3 and 5 mm/s. Our device successfully provided the stress and strain curve of the samples and our results showed that there were significant effects of speed on the young’s modulus of the samples (p < 0.05). Compared to the expensive commercial device, our lower-cost device provided comparable stress and strain curves of the sample. Based on our device and findings, various sizes of samples can be measured and viscoelastic properties of the soft tissues can be obtained. Our portable device and approach can help to investigate young’s modulus of musculoskeletal soft tissues conveniently, and can be a basis for developing a material testing device in a surgical room or various lab environments.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 529
Author(s):  
Chunzhi Du ◽  
Zhifan Li ◽  
Bingfei Liu

Nanoporous Shape Memory Alloys (SMA) are widely used in aerospace, military industry, medical and health and other fields. More and more attention has been paid to its mechanical properties. In particular, when the size of the pores is reduced to the nanometer level, the effect of the surface effect of the nanoporous material on the mechanical properties of the SMA will increase sharply, and the residual strain of the SMA material will change with the nanoporosity. In this work, the expression of Young’s modulus of nanopore SMA considering surface effects is first derived, which is a function of nanoporosity and nanopore size. Based on the obtained Young’s modulus, a constitutive model of nanoporous SMA considering residual strain is established. Then, the stress–strain curve of dense SMA based on the new constitutive model is drawn by numerical method. The results are in good agreement with the simulation results in the published literature. Finally, the stress-strain curves of SMA with different nanoporosities are drawn, and it is concluded that the Young’s modulus and strength limit decrease with the increase of nanoporosity.


2011 ◽  
Vol 465 ◽  
pp. 129-132
Author(s):  
Luboš Náhlík ◽  
Bohuslav Máša ◽  
Pavel Hutař

Particulate composites with crosslinked polymer matrix and solid fillers are one of important classes of materials such as construction materials, high-performance engineering materials, sealants, protective organic coatings, dental materials, or solid explosives. The main focus of a present paper is an estimation of the macroscopic Young’s modulus and stress-strain behavior of a particulate composite with polymer matrix. The particulate composite with a crosslinked polymer matrix in a rubbery state filled by an alumina-based mineral filler is investigated by means of the finite element method. A hyperelastic material behavior of the matrix was modeled by the Mooney-Rivlin material model. Numerical models on the base of unit cell were developed. The numerical results obtained were compared with experimental stress-strain curve and value of initial Young’s modulus. The paper can contribute to a better understanding of the behavior and failure of particulate composites with a crosslinked polymer matrix.


2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Longling Fan ◽  
Jing Yao ◽  
Chun Yang ◽  
Dalin Tang ◽  
Di Xu

Methods to quantify ventricle material properties noninvasively using in vivo data are of great important in clinical applications. An ultrasound echo-based computational modeling approach was proposed to quantify left ventricle (LV) material properties, curvature, and stress/strain conditions and find differences between normal LV and LV with infarct. Echo image data were acquired from five patients with myocardial infarction (I-Group) and five healthy volunteers as control (H-Group). Finite element models were constructed to obtain ventricle stress and strain conditions. Material stiffening and softening were used to model ventricle active contraction and relaxation. Systolic and diastolic material parameter values were obtained by adjusting the models to match echo volume data. Young's modulus (YM) value was obtained for each material stress–strain curve for easy comparison. LV wall thickness, circumferential and longitudinal curvatures (C- and L-curvature), material parameter values, and stress/strain values were recorded for analysis. Using the mean value of H-Group as the base value, at end-diastole, I-Group mean YM value for the fiber direction stress–strain curve was 54% stiffer than that of H-Group (136.24 kPa versus 88.68 kPa). At end-systole, the mean YM values from the two groups were similar (175.84 kPa versus 200.2 kPa). More interestingly, H-Group end-systole mean YM was 126% higher that its end-diastole value, while I-Group end-systole mean YM was only 29% higher that its end-diastole value. This indicated that H-Group had much greater systole–diastole material stiffness variations. At beginning-of-ejection (BE), LV ejection fraction (LVEF) showed positive correlation with C-curvature, stress, and strain, and negative correlation with LV volume, respectively. At beginning-of-filling (BF), LVEF showed positive correlation with C-curvature and strain, but negative correlation with stress and LV volume, respectively. Using averaged values of two groups at BE, I-Group stress, strain, and wall thickness were 32%, 29%, and 18% lower (thinner), respectively, compared to those of H-Group. L-curvature from I-Group was 61% higher than that from H-Group. Difference in C-curvature between the two groups was not statistically significant. Our results indicated that our modeling approach has the potential to determine in vivo ventricle material properties, which in turn could lead to methods to infer presence of infarct from LV contractibility and material stiffness variations. Quantitative differences in LV volume, curvatures, stress, strain, and wall thickness between the two groups were provided.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1252 ◽  
Author(s):  
Martin Diehl ◽  
Jörn Niehuesbernd ◽  
Enrico Bruder

The influence of grain shape and crystallographic orientation on the global and local elastic and plastic behaviour of strongly textured materials is investigated with the help of full-field simulations based on texture data from electron backscatter diffraction (EBSD) measurements. To this end, eight different microstructures are generated from experimental data of a high-strength low-alloy (HSLA) steel processed by linear flow splitting. It is shown that the most significant factor on the global elastic stress–strain response (i.e., Young’s modulus) is the crystallographic texture. Therefore, simple texture-based models and an analytic expression based on the geometric mean to determine the orientation dependent Young’s modulus are able to give accurate predictions. In contrast, with regards to the plastic anisotropy (i.e., yield stress), simple analytic approaches based on the calculation of the Taylor factor, yield different results than full-field microstructure simulations. Moreover, in the case of full-field models, the selected microstructure representation influences the outcome of the simulations. In addition, the full-field simulations, allow to investigate the micro-mechanical fields, which are not readily available from the analytic expressions. As the stress–strain partitioning visible from these fields is the underlying reason for the observed macroscopic behaviour, studying them makes it possible to evaluate the microstructure representations with respect to their capabilities of reproducing experimental results.


2011 ◽  
Vol 243-249 ◽  
pp. 2310-2313 ◽  
Author(s):  
Hua Yan Yao ◽  
Zhen Hua Zhang ◽  
Zhao Hui Zhu

Water is an important factor that influences the mechanical properties of rock. Uniaxial compressive experiments have been carried out on sandstone under different cyclic times of drying and wetting. The corresponding complete stress-strain curves are obtained, and characteristics of deformation and failure are analyzed. Test results show that when sandstone samples are submitted to cyclic of drying and wetting, the uniaxial strength and Young's modulus of sandstone obviously decrease. Then, the improved Duncan constitutive model is developed, which can do better in describing sample’s deformation behaviors subject to different cyclic times of drying and wetting. Introduction


Sign in / Sign up

Export Citation Format

Share Document