Mapping of Uranium in Surrogate Nuclear Debris Using Laser-Induced Breakdown Spectroscopy (LIBS)

2019 ◽  
Vol 73 (6) ◽  
pp. 591-600 ◽  
Author(s):  
Michael B. Shattan ◽  
Mark Gragston ◽  
Zhili Zhang ◽  
John D. Auxier ◽  
Kathryn G. McIntosh ◽  
...  

This work describes the use of a laser-induced breakdown spectroscopy (LIBS) system to conduct macroscopic elemental mapping of uranium and iron on the exterior surface and interior center cross-section of surrogate nuclear debris for the first time. The results suggest that similar LIBS systems could be packaged for use as an effective instrument for screening samples during collection activities in the field or to conduct process control measurements during the production of debris surrogates. The technique focuses on the mitigation of chemical and physical matrix effects of four uranium atomic emission lines, relatively free of interferences and of good analytical value. At a spatial resolution of 0.5 mm, a material fractionation pattern in the surrogate debris is identified and discussed in terms of constituent melting temperatures and thermal gradients experienced.

2020 ◽  
Vol 1 (2) ◽  
pp. 5-8
Author(s):  
Komang Gde Suastika, Heri Suyanto, Gunarjo, Sadiana, Darmaji

Abstract - Laser-Induced Breakdown Spectroscopy (LIBS) is one method of atomic emission spectroscopy using laser ablation as an energy source. This method is used to characterize the type of amethysts that originally come from Sukamara, Central Kalimantan. The result of amethyst characterization can be used as a reference for claiming the natural wealth of the amethyst. The amethyst samples are directly taken from the amethyst mining field in the District Gem Amethyst and consist of four color variations: white, black, yellow, and purple. These samples were analyzed by LIBS, using laser energy of 120 mJ, delay time detection of 2 μs and accumulation of 3, with and without cleaning. The purpose of this study is to determine emission spectra characteristics, contained elements, and physical characteristics of each amethyst sample. The spectra show that the amethyst samples contain some elements such as Al, Ca, K, Fe, Gd, Ba, Si, Be, H, O, N, Cl and Pu with various emission intensities. The value of emission intensity corresponds to concentration of element in the sample. Hence, the characteristics of the amethysts are based on their concentration value. The element with the highest concentration in all samples is Si, which is related to the chemical formula of SiO2. The element with the lowest concentration in all samples is Ca that is found in black and yellow amethysts. The emission intensity of Fe element can distinguish between white, purple, and yellow amethyst. If Fe emission intensity is very low, it indicates yellow sample. Thus, we may conclude that LIBS is a method that can be used to characterize the amethyst samples.Key words: amethyst, impurity, laser-induced, breakdown spectroscopy, characteristic, gemstones


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 705
Author(s):  
Peter A. Defnet ◽  
Michael A. Wise ◽  
Russell S. Harmon ◽  
Richard R. Hark ◽  
Keith Hilferding

Laser-induced breakdown spectroscopy (LIBS) is a simple and straightforward technique of atomic emission spectroscopy that can provide multi-element detection and quantification in any material, in-situ and in real time because all elements emit in the 200–900 nm spectral range of the LIBS optical emission. This study evaluated two practical applications of LIBS—validation of labels assigned to garnets in museum collections and discrimination of LCT (lithium-cesium-tantalum) and NYF (niobium, yttrium and fluorine) pegmatites based on garnet geochemical fingerprinting, both of which could be implemented on site in a museum or field setting with a handheld LIBS analyzer. Major element compositions were determined using electron microprobe analysis for a suite of 208 garnets from 24 countries to determine garnet type. Both commercial laboratory and handheld analyzers were then used to acquire LIBS broadband spectra that were chemometrically processed by partial least squares discriminant analysis (PLSDA) and linear support vector machine classification (SVM). High attribution success rates (>98%) were obtained using PLSDA and SVM for the handheld data suggesting that LIBS could be used in a museum setting to assign garnet type quickly and accurately. LIBS also identifies changes in garnet composition associated with increasing mineral and chemical complexity of LCT and NYF pegmatites.


Author(s):  
Raquel C Machado ◽  
Diego Victor Babos ◽  
Daniel Fernandes Andrade ◽  
Edenir Rodrigues Pereira-Filho

Quantitative analysis requires several efforts to obtain an adequate calibration method to overcome matrix effects employing direct solid analysis by laser-induced breakdown spectroscopy (LIBS). To this end, in this study,...


2015 ◽  
Vol 30 (5) ◽  
pp. 1050-1056 ◽  
Author(s):  
F. J. Fortes ◽  
S. Guirado ◽  
A. Metzinger ◽  
J. J. Laserna

In this work, we demonstrate for the first time the feasibility of stand-off laser induced breakdown spectroscopy (ST-LIBS) for the analysis of distant submerged objects.


1992 ◽  
Vol 46 (9) ◽  
pp. 1382-1387 ◽  
Author(s):  
J. A. Aguilera ◽  
C. Aragón ◽  
J. Campos

Laser-induced breakdown spectroscopy has been used to determine carbon content in steel. The plasma was formed by focusing a Nd:YAG laser on the sample surface. With the use of time-resolved spectroscopy and generation of the plasma in nitrogen atmosphere, a precision of 1.6% and a detection limit of 65 ppm have been obtained. These values are similar to those of other accurate conventional techniques. Matrix effects for the studied steels are reduced to a small slope difference between the calibration curves for stainless and nonstainless steels.


Author(s):  
Ji Chen ◽  
Kaiping Zhan ◽  
Qingzhou Li ◽  
Zhiyang Tang ◽  
Chenwei Zhu ◽  
...  

The quantification accuracy of laser-induced breakdown spectroscopy was limited due to matrix effects. In this work, a method named unsupervised-clustering-based quantification (UCQ) was proposed to reduce the matrix effects by...


Author(s):  
Wei Wang ◽  
Lanxiang Sun ◽  
Peng Zhang ◽  
Tong Chen ◽  
Liming Zheng ◽  
...  

The laser-induced breakdown spectroscopy (LIBS) analysis method displays a significant matrix effects which greatly hinder the application of this technology. Even if the concentration of a certain element is constant,...


2019 ◽  
Vol 34 (7) ◽  
pp. 1351-1354 ◽  
Author(s):  
Lanfang Zou ◽  
Mallory J. Stenslik ◽  
Morgan B. Giles ◽  
James D. Ormes ◽  
Maureen Marsales ◽  
...  

A novel laser induced breakdown spectroscopy (LIBS) 2D imaging method is used to directly visualize the drug release process of long-acting injectable (LAI) implants for the first time.


Sign in / Sign up

Export Citation Format

Share Document