Effects of Intermittent Noise on the Performance of a Complex Psychomotor Task

Author(s):  
A. John Eschenbrenner

Manual image-motion compensation, a complex psychomotor task involved in certain photographic activities from orbit, was investigated as a function of the temporal pattern (aperiodic, periodic, or continuous) and intensity level (50, 70, or 90 db.) of white noise. Performance was measured in terms of the total amount of time image motion was held at or below a 40-microradians/second criterion for specific blocks of trials. The results of the investigation showed that white noise had a detrimental effect on image motion compensation performance, and that the magnitude of the decrement varied as a function of both the temporal pattern and intensity level of this noise.

Author(s):  
MP Ramachandran ◽  
MK Agarwal ◽  
DA Daniel

Image registration is important in geostationary weather satellites. Achieving consistent registration of the images with respect to the geographical locations on the Earth is here of interest. The consistency in the registration between the images is affected whenever the orbital inclination and eccentricity are not zero. The imaging payload has a two-axis scanning mirror to capture the Earth image. The above orbital effects together with scan mirror pointing direction are the factors that cause the misregistration. This paper presents an onboard algorithm that provides the scan compensation angles due to the above factors and achieves consistent registration. The compensation varies every second, which is the time taken for each scan. Hence it is preferred to have computations onboard than to have ground based bulk uplinks for the scan compensation. The paper presents an algorithm that is useful, say, when (i) the onboard computing capabilities are limited, (ii) the navigation accuracies are coarse and (iii) the image resampling is not preferred on the ground and the payload data are directly used for weather applications. The paper also discusses the tests that were carried on the onboard software in order to validate its performance in achieving the consistent registration before launch. This is done by using another independent software tool which is also described in detail. Image motion algorithm was invoked for a couple of days in INSAT 3DR. The atmospheric wind vector deduced directly from the satellite images is given at the end.


2013 ◽  
Vol 33 (5) ◽  
pp. 0528001
Author(s):  
武星星 Wu Xingxing ◽  
刘金国 Liu Jinguo ◽  
周怀得 Zhou Huaide

2011 ◽  
Vol 19 (4) ◽  
pp. 812-819 ◽  
Author(s):  
黄浦 HUANG Pu ◽  
葛文奇 GE Wen-qi ◽  
李友一 LI You-yi ◽  
李军 LI Jun ◽  
修吉宏 XIU Ji-hong

2019 ◽  
Vol 11 (16) ◽  
pp. 1924 ◽  
Author(s):  
Dapeng Tian ◽  
Yutang Wang ◽  
Zhongshi Wang ◽  
Fuchao Wang ◽  
Huijun Gao

Urban remote sensing with moving carriers enables comprehensive monitoring of an urban area. High spatial resolution and wide covering are always required to improve the performance and efficiency of remote sensing. Continuous scanning imaging is a feasible solution. However, imaging motion degrades the performance of a remote sensing system. Rotating motion leads to the loss of key urban morphology information of a panorama imaging. Image translation results in blurry images. For high spatial resolution and high efficiency imaging with low illumination condition, such as imaging at dusk, long-focus lens and long integral time must be further utilized, which makes the problem more severe. In this paper, a novel image motion compensation method is proposed to compensate for image rotation and image translation simultaneously. A quantitative description of image motion, including both image rotation and image translation, is first developed based on the principle of geometrical optics and then analyzed in detail through numerical simulations. Furthermore, a comprehensive image rotation compensation method is developed based on four-channel bilateral control with sliding mode controller, at the same time image translation compensation is performed according to the quantitative relationship of the motion of the scan mirror and image translation compensator. The experimental results show that the proposed method provides effective compensation for image rotation and image translation. This enables acquisition of high spatial resolution urban panoramic images.


2020 ◽  
Vol 10 (20) ◽  
pp. 7119
Author(s):  
Jihong Xiu ◽  
Pu Huang ◽  
Jun Li ◽  
Hongwen Zhang ◽  
Youyi Li

In recent years, applications such as marine search and rescue, border patrol, etc. require electro-optical equipment to have both high resolution and precise geographic positioning abilities. The step and stare working based on a composite control system is a preferred solution. This paper proposed a step and stare system composed of two single-axis fast steering mirrors and a two-axis gimbal. The fast steering mirrors (FSMs) realize image motion compensation and the gimbal completes pointing control. The working principle and the working mode of the system are described first. According to the imaging optical path, the algorithm and control flow of the line of sight (LOS) and image motion compensation are developed. The proposed method is verified through ground imaging and flight tests. Under the condition of flight, the pointing accuracy of the target can be controlled within 15 m. The proposed algorithm can achieve effective motion compensation and get high-resolution images. This achieves high resolution and accurate LOS simultaneously.


Sign in / Sign up

Export Citation Format

Share Document