scholarly journals Multi-robot formation control based on high-order bilateral consensus

2020 ◽  
Vol 53 (5-6) ◽  
pp. 983-993
Author(s):  
Dejian Liu ◽  
Chengguo Zong ◽  
Detang Wang ◽  
Wenbin Zhao ◽  
Yuehua Wang ◽  
...  

A high-order bilateral consensus robot formation control protocol for multi-agent systems is proposed in this paper. Considering the relationship between the state of the information exchange topology and derivatives, a third-order bilateral consistency protocol is presented and is extended it to a higher order bilateral consensus protocol. First, sufficient conditions for the third-order multi-agent system are given to achieve the bilateral consensus control protocol, and the system’s asymptotical stability is also achieved by adjusting the feedback system gain parameters. Then, by further studying the cohesive relationship between each state variable of the third-order protocol and the gauge transformation, the sufficient conditions of the higher order system are also provided. Finally, by applying the third-order control protocol to the control of multi-robot formation, the general control scheme of robot formation is given and the control of robot formation is successfully achieved.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yilong Yang ◽  
Zhijian Ji ◽  
Lei Tian ◽  
Huizi Ma ◽  
Qingyuan Qi

The bipartite consensus of high-order edge dynamics is investigated for coopetition multiagent systems, in which the cooperative and competitive relationships among agents are characterized by positive weight and negative weight, respectively. By mapping the initial graph to a line graph, the distributed control protocol is proposed for the strongly connected, digon sign-symmetric structurally balanced line graph; and then we give sufficient conditions for the third-order multi-gent system to achieve both the bipartite consensus of edge dynamics and the final value of bipartite consensus. By transforming the coefficients of characteristic polynomial from complex domain to real number domain, the sufficient conditions for the bipartite consensus of high-order edge dynamics are also proposed, and the final values of the high-order edge dynamics on multiagent systems are obtained.


2019 ◽  
Vol 07 (01) ◽  
pp. 3-13 ◽  
Author(s):  
Wei Xiao ◽  
Jianglong Yu ◽  
Rui Wang ◽  
Xiwang Dong ◽  
Qingdong Li ◽  
...  

Time-varying formation analysis and design problems for general linear multi-agent systems with switching interaction topologies and time-varying delays are studied. Firstly, a consensus-based formation control protocol is constructed using local information of the neighboring agents. An algorithm with three steps is presented to design the proposed formation control protocol. Then, based on linear matrix inequality technique and common Lyapunove–Krasovskii stability theory, sufficient conditions for general linear multi-agent systems with switching topologies and time-varying delays to achieve time-varying formation are given together with a time-varying formation feasibility condition. Finally, a numerical simulation is given to demonstrate the effectiveness of the obtained theoretical results.


1967 ◽  
Vol 10 (5) ◽  
pp. 681-688 ◽  
Author(s):  
B.S. Lalli

The purpose of this paper is to obtain a set of sufficient conditions for “global asymptotic stability” of the trivial solution x = 0 of the differential equation1.1using a Lyapunov function which is substantially different from similar functions used in [2], [3] and [4], for similar differential equations. The functions f1, f2 and f3 are real - valued and are smooth enough to ensure the existence of the solutions of (1.1) on [0, ∞). The dot indicates differentiation with respect to t. We are taking a and b to be some positive parameters.


2012 ◽  
Vol 04 (01) ◽  
pp. 1250010 ◽  
Author(s):  
V. P. VALLALA ◽  
G. S. PAYETTE ◽  
J. N. REDDY

In this paper, a finite element model for efficient nonlinear analysis of the mechanical response of viscoelastic beams is presented. The principle of virtual work is utilized in conjunction with the third-order beam theory to develop displacement-based, weak-form Galerkin finite element model for both quasi-static and fully-transient analysis. The displacement field is assumed such that the third-order beam theory admits C0 Lagrange interpolation of all dependent variables and the constitutive equation can be that of an isotropic material. Also, higher-order interpolation functions of spectral/hp type are employed to efficiently eliminate numerical locking. The mechanical properties are considered to be linear viscoelastic while the beam may undergo von Kármán nonlinear geometric deformations. The constitutive equations are modeled using Prony exponential series with general n-parameter Kelvin chain as its mechanical analogy for quasi-static cases and a simple two-element Maxwell model for dynamic cases. The fully discretized finite element equations are obtained by approximating the convolution integrals from the viscous part of the constitutive relations using a trapezoidal rule. A two-point recurrence scheme is developed that uses the approximation of relaxation moduli with Prony series. This necessitates the data storage for only the last time step and not for the entire deformation history.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hongtao Dang ◽  
Le Wang ◽  
Yan Zhang ◽  
Jianye Yang

This paper discusses limited-budget time-varying formation design and analysis problems for a high-order linear swarm system with a fixed communication topology. Firstly, the communication topology among agents is modeled as an undirected and connected graph, and a new formation control protocol with an energy integral term is proposed to realize formation control and to guarantee the practical energy assumption is less than the limited energy budget. Then, by the matrix inequality tool, sufficient conditions for limited-budget formation design and analysis are proposed, respectively, which are scalable and checkable since they are independent of the number of agents of a swarm system and can be transformed into linear matrix inequality constraints. Moreover, an explicit expression of the formation center function is given, which contains the formation function part and the cooperative state part and is not associated with the derivatives of the formation functions. Finally, a numerical simulation is shown to demonstrate the effectiveness of theoretical results.


2008 ◽  
Vol 58 (2) ◽  
Author(s):  
B. Baculíková ◽  
E. Elabbasy ◽  
S. Saker ◽  
J. Džurina

AbstractIn this paper, we are concerned with the oscillation properties of the third order differential equation $$ \left( {b(t) \left( {[a(t)x'(t)'} \right)^\gamma } \right)^\prime + q(t)x^\gamma (t) = 0, \gamma > 0 $$. Some new sufficient conditions which insure that every solution oscillates or converges to zero are established. The obtained results extend the results known in the literature for γ = 1. Some examples are considered to illustrate our main results.


Sign in / Sign up

Export Citation Format

Share Document