Studies of fiber volume fraction and geometry of variable cross-section tubular 3D five-direction braided fabric

2011 ◽  
Vol 46 (14) ◽  
pp. 1697-1704 ◽  
Author(s):  
Wensuo Ma ◽  
Jianxun Zhu ◽  
Yun Jiang
2019 ◽  
Vol 140 ◽  
pp. 02004
Author(s):  
Aleksey Ignatov ◽  
Rustam Subkhankulov

Numerous studies in application of modern composite materials show that their advantages can be successfully implemented in manufacturing «smart» products. This study proposes an improved technological method of manufacturing multilayer environmentally friendly products with a variable cross section, which allows us to expand the possibilities of using modern polymer composite materials (PCM). The technology allows manufacturing products of the most complex geometric shapes, such as wind turbine blades. The aim of the study is the technological support of engineering production in the manufacture of multilayer products of variable cross section made from PCM. Scientific novelty consists in identifying the patterns of implementation and management of the manufacturing process of multilayer products of variable cross-section, and establishing the influence of structural and technological parameters of the manufacturing process on their operational characteristics. The relationship between the pressure of a hot directed air stream and the volume fraction of pores in the hardened material of a multilayer composite product with a variable cross section during layer-by-layer application is investigated. During the study, fundamental and applied principles of mechanical engineering technology, material resistance, adhesion theory, mathematical statistics tools and software were used to process the results of the experiment. Based on the results of laboratory studies, a methodology has been developed for effective prediction of pore content in the manufacturing of composite products. The introduction of the presented technology and the corresponding original methodology into production will reduce the complexity and energy costs of manufacturing composite products, improve their quality and reduce the impact of toxic components from composite materials on workers.


2021 ◽  
Author(s):  
Haocheng Xu ◽  
Ying Zhang ◽  
Jiajun Wang ◽  
Tuhua Zhong ◽  
Xinxin Ma ◽  
...  

AbstractA comprehensive understanding of vascular bundles is the key to elucidate the excellent intrinsic mechanical properties of bamboo. This research aims to investigate the gradient distribution of fiber volume fraction and the gradient changes in the shape of vascular bundles along the radial axis in Phyllostachys. We constructed a universal transfer-learning-based vascular bundle detection model with high precision of up to 96.97%, which can help to acquire the characteristics of vascular bundles quickly and accurately. The total number of vascular bundles, total fiber sheath area, the length, width and area of fiber sheath of individual vascular bundles within the entire cross-section were counted, and the results showed that these parameters had a strongly positive linear correlation with the outer circumference and wall thickness of bamboo culms, but the fiber volume fraction (around 25.5 %) and the length-to-width ratio of the vascular bundles (around 1.226) were relatively constant. Furthermore, we layered the cross section of bamboo according to the wall thickness finely and counted the characteristics of vascular bundle in each layer. The results showed that the radial distribution of fiber volume fraction decreased exponentially, the radial distribution of the length-to-width ratio of vascular bundle decreased quadratically, the radial distribution of the width of vascular bundle increased linearly. The trends of the gradient change in vascular bundle’s characteristics were found highly consistent among 29 bamboo species in Phyllostachys.One sentence summaryA universal vascular bundle detection model can efficiently dissect vascular bundles in Phyllostachys, and the radial gradient change of vascular bundles in cross-section are found highly consistent.


2010 ◽  
Vol 452-453 ◽  
pp. 117-120
Author(s):  
Zhen Qing Wang ◽  
Xiao Qiang Wang ◽  
Ji Feng Zhang ◽  
Song Zhou

A method for the parametric generation of the transversal cross-section microstructure model of unidirectional long-fiber reinforced composite (LFRC) is presented in this paper. Meanwhile, both the random distribution of the fibers and high fiber volume fraction are considered in the algorithm. The fiber distribution in the cross-section is generated through random movements of the fibers from their initial regular square arrangement. Furthermore, cohesive zone element is introduced into modeling the interphase between the fiber and the matrix. All these processes are carried out by the secondary development of the finite element codes (ABAQUS) via Python language programming. Based on the model generated, micromechanical finite element analysis (FEA) is performed to predict the damage initiation and subsequent evolution of the composites. The results show that this technique is capable of capturing the random distribution nature of these composites even for high fiber volume fraction. Moreover, the results prove that a good agreement with the experimental results is found.


2018 ◽  
Vol 3 (12) ◽  
pp. 67-73
Author(s):  
Kanti Pandey

In present paper Re-reflection  effect on  shock –waves in two-phase flows through a tube of variable cross-section is considered when particle  volume fraction appeared as an additional variable .It is concluded that re-reflected effects reduce the cross sectional  area .For two-phase flows when equilibrium is eventually established , presence of particle volume fraction , further reduce  the cross – sectional area. One dimensional area relation for a non – uniform , steady flow ahead of a shock   is obtained and concluded that  all the results are valid for the case   when  direction of the shock motion and the gas flow ahead of the  shock is same  .  In preparation of graphs Mathematica 7 is used .


2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


2019 ◽  
Vol 14 (2) ◽  
pp. 138-141
Author(s):  
I.M. Utyashev

Variable cross-section rods are used in many parts and mechanisms. For example, conical rods are widely used in percussion mechanisms. The strength of such parts directly depends on the natural frequencies of longitudinal vibrations. The paper presents a method that allows numerically finding the natural frequencies of longitudinal vibrations of an elastic rod with a variable cross section. This method is based on representing the cross-sectional area as an exponential function of a polynomial of degree n. Based on this idea, it was possible to formulate the Sturm-Liouville problem with boundary conditions of the third kind. The linearly independent functions of the general solution have the form of a power series in the variables x and λ, as a result of which the order of the characteristic equation depends on the choice of the number of terms in the series. The presented approach differs from the works of other authors both in the formulation and in the solution method. In the work, a rod with a rigidly fixed left end is considered, fixing on the right end can be either free, or elastic or rigid. The first three natural frequencies for various cross-sectional profiles are given. From the analysis of the numerical results it follows that in a rigidly fixed rod with thinning in the middle part, the first natural frequency is noticeably higher than that of a conical rod. It is shown that with an increase in the rigidity of fixation at the right end, the natural frequencies increase for all cross section profiles. The results of the study can be used to solve inverse problems of restoring the cross-sectional profile from a finite set of natural frequencies.


2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


Sign in / Sign up

Export Citation Format

Share Document