Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite

2012 ◽  
Vol 47 (8) ◽  
pp. 979-990 ◽  
Author(s):  
IS Aji ◽  
ES Zainudin ◽  
K Abdan ◽  
SM Sapuan ◽  
MD Khairul
2018 ◽  
Vol 773 ◽  
pp. 94-99 ◽  
Author(s):  
Venitalitya Augustia ◽  
Achmad Chafidz ◽  
Lucky Setyaningsih ◽  
Muhammad Rizal ◽  
Mujtahid Kaavessina ◽  
...  

The trend of using natural fibers as green filler in the fabrication of polymer composites is increasing. One of these natural fibers is date palm fiber (DPF). Date palm fiber is considered as agricultural waste in certain areas, such as Middle East countries. Therefore, the utilization of this fiber in the composites fabrication is an interesting topic of research. In the current study, composites were prepared by melt blending DPF with high density polyethylene (HDPE). Five different DPF loadings were studied (i.e. 0, 5, 10, 20, 30 wt%). The effect of the DPF loadings on the mechanical properties and water absorption behavior of the composites were investigated. The tensile test result showed that tensile strengths of all the composites samples were all higher than the neat HDPE with the maximum improvement was achieved at the DPF loading of 5 wt% (i.e. DFC-5), which was about 19.23 MPa (138% higher than the neat HDPE). Whereas, the flexural test result showed that the flexural strength of the composites slightly increased compared to that of the neat HDPE only until 5 wt% DPF loading (i.e. DFC-5). Afterward, the flexural strength of the DFC-10 was equal to that of the neat HDPE, and decreasing with further increase of DPF loadings. Additionally, the water absorption test result showed that the water absorption rate and uptake of water (at equilibrium) increased with the increase of DPF loading.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1361 ◽  
Author(s):  
David Manas ◽  
Miroslav Manas ◽  
Ales Mizera ◽  
Pavel Stoklasek ◽  
Jan Navratil ◽  
...  

This article discusses the possibilities of using radiation cross-linked high density polyethylene (HDPEx) acting as a filler in the original high density polyethylene (HDPE) matrix. The newly created composite is one of the possible answers to questions relating to the processing of radiation cross-linked thermoplastics. Radiation cross-linked networking is—nowadays, a commonly used technology that can significantly modify the properties of many types of thermoplastics. This paper describes the influence of the concentration of filler, in the form of grit or powder obtained by the grinding/milling of products/industrial waste from radiation cross-linked high density polyethylene (rHDPEx) on the mechanical and processing properties and the composite structure. It was determined that, by varying the concentration of the filler, it is possible to influence the mechanical behaviour of the composite. The mechanical properties of the new composite—measured at room temperature, are generally comparable or better than the same properties of the original thermoplastic. This creates very good assumptions for the effective and economically acceptable, processing of high density polyethylene (rHDPEx) waste. Its processability however, is limited; it can be processed by injection moulding up to 60 wt %.


2021 ◽  
Vol 1047 ◽  
pp. 3-8
Author(s):  
Zheng Lu Ma ◽  
Jui Chin Chen ◽  
Chi Hui Tsou ◽  
Yan Mei Wang ◽  
Xin Yuan Tian ◽  
...  

High-density polyethylene (HDPE) is used as the matrix and attapulgite (ATT) is used as the reinforcing phase. HDPE/ATT nanocomposites are prepared by melt blending. The effect of ATT content on the mechanical properties, water absorption and morphology of HDPE/ATT composites was studied. The results show that adding a small amount of ATT can improve the mechanical properties of HDPE, but excessive addition will reduce the mechanical properties of HDPE. The water absorption and contact angle test results show that as the ATT content increases, the composite material becomes more and more hydrophilic. After joining ATT, the performance of HDPE / ATT composite material has a significant improvement effect, and it is believed that it will have broad application prospects in the future.


2013 ◽  
Vol 750-752 ◽  
pp. 38-42
Author(s):  
Wang Wang Yu ◽  
Juan Li ◽  
Yun Ping Cao

In this study, the silvergrass (SV) was used to reinforce HDPE composites. The effects of polymeric methylene diphenyl diisocyanate (PMDI) content, slivergrass fibers content on the mechanical, water absortion of wood plastic composites (WPCs) were investigated. It was found that the mechanical properties of the SV reinforced HDPE composites can be improved by PMDI treatment. The highest tensile strength and flexural strength of the composites can be reached with 50% SV contents at the SV: PMDI=6:1. It has been proved that the hydroxyl groups of SV fibers which can react with the-NCO by FTIR. It also can be concluded that the water absorption of PMDI treated WPCs was lower than untreated ones.


Sign in / Sign up

Export Citation Format

Share Document