Progressive damage simulation of open-hole composite laminates under compression based on different failure criteria

2016 ◽  
Vol 51 (9) ◽  
pp. 1239-1251 ◽  
Author(s):  
Song Zhou ◽  
Yi Sun ◽  
Boyang Chen ◽  
Tong-Earn Tay

The strength prediction of open-hole fibre-reinforced composite laminate under compression is very important in the design of composite structures. The modelling of fibre, matrix damage and delamination plays an important role in the understanding of the damage mechanics of laminate under open-hole compression. In this article, a progressive damage model for open-hole compression that is based on continuum shell elements and cohesive elements is established to model in-plane damage and delamination, respectively. The damage mechanics of sublaminate-scaled laminates with ply sequence [45/0/−45/90]ms and ply-level-scaled laminates with ply sequence [45n/0n/−45n/90n]s are investigated by our proposed model. The Tsai-Wu and Hoffman failure criteria are employed for the determination of matrix damage initiation. Compared with the experiments, the numerical results using the Tsai-Wu criterion exhibit better accuracy regarding open-hole compression strength prediction and failure modes simulation.

2017 ◽  
Vol 36 (20) ◽  
pp. 1473-1486 ◽  
Author(s):  
Song Zhou ◽  
Yi Sun ◽  
Boyang Chen ◽  
Tong-Earn Tay

The sizes effects on the strengths of open-hole fibre-reinforced composite laminates subjected to tensile loading (OHT) have been investigated widely. However, little attention has been paid to the influence of material orthotropy. This paper presents a progressive damage model for the model failure of notched laminates under tensile loading based on continuum damage mechanics and cohesive elements. The effects of orthotropy on the failure of notched laminates with seven different ply sequences are investigated by our proposed model. The prediction results adopting the Hoffman and Pinho failure criterions to determine matrix damage initiation are compared with the results of experiments. Our proposed models are able to predict the strong influence of orthotropy on strengths of open-hole laminate under tension, and model using Pinho criterion can predict the open-hole tension strength most accurately.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5606
Author(s):  
Guoqiang Gao ◽  
Luling An ◽  
Ioannis K. Giannopoulos ◽  
Ning Han ◽  
Ende Ge ◽  
...  

Finite element numerical progressive damage modelling and simulations applied to the strength prediction of airframe bolted joints on composite laminates can lead to shorter and more efficient product cycles in terms of design, analysis and certification, while benefiting the economic manufacturing of composite structures. In the study herein, experimental bolted joint bearing tests were carried out to study the strength and failure modes of fastened composite plates under static tensile loads. The experimental results were subsequently benchmarked against various progressive damage numerical modelling simulations where the effects of different failure criteria, damage variables and subroutines were considered. Evidence was produced that indicated that both the accuracy of the simulation results and the speed of calculation were affected by the choice of user input and numerical scheme.


2020 ◽  
Vol 995 ◽  
pp. 209-213
Author(s):  
Young W. Kwon

Failure analyses of laminated fibrous composite structures were conducted using the failure criteria based on a multiscale approach. The failure criteria used the stresses and strains in the fiber and matrix materials, respectively, rather than those smeared values at the lamina level. The failure modes and their respective failure criteria consist of fiber failure, matrix failure and their interface failure explicitly. In order to determine the stresses and strains at the constituent material level (i.e. fiber and matrix materials), analytical expressions were derived using a unit-cell model. This model was used for the multiscale approach for both upscaling and downscaling processes. The failure criteria are applicable to both quasi-static loading as well as dynamic loading with strain rate effects.


2001 ◽  
Author(s):  
Christos C. Chamis ◽  
Levon Minnetyan

Abstract An integrally stiffened graphite/epoxy composite rotorcraft structure is evaluated via computational simulation. A computer code that scales up constituent micromechanics level material properties to the structure level and accounts for all possible failure modes is used for the simulation of composite degradation under loading. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulation. Design implications with regard to defect and damage tolerance of integrally stiffened composite structures are examined. A procedure is outlined regarding the use of this type of information for setting quality acceptance criteria, design allowables, damage tolerance, and retirement-for-cause criteria.


Author(s):  
Zhengfang Qian

This paper presents a damage mechanics-based methodology for the progressive damage and virtual qualification of advanced electronic packages such as BGAs, DCAs, CSPs, and Flip-chips. The key technique is to implement the material nonlinearity into commercially available software tools. A unified viscoplastic constitutive framework with the damage evolution and failure criteria has been successfully implemented into the ABAQUS® code to model time-rate-temperature dependent material properties. The framework has been successfully applied to solder alloys, polymer films, and underfill encapsulants. The mathematical structure and numerical algorithm development of the unified constitutive framework as well as the key implementation techniques for commercial FEA codes have been summarized in this paper. Both crack initiation and propagation of a solder joint with damage evolution under mechanical cyclic loading have been demonstrated. Virtual simulations of TSOP component failure under mechanical cyclic loading and BGA package under thermal cyclic loading have also been presented.


2018 ◽  
Vol 37 (21) ◽  
pp. 1279-1303 ◽  
Author(s):  
Hongyong Jiang ◽  
Yiru Ren ◽  
Zhihui Liu ◽  
Songjun Zhang ◽  
Xiaoqing Wang

The crushing behaviors of thin-walled composite structures subjected to quasi-static axial loading are comparatively evaluated using four different failure initiation criteria. Both available crushing tests of composite corrugated plate and square tube are used to validate the stiffness degradation-based damage model with the Maximum-stress criterion. Comparatively, Hashin, Maximum-stress, Stress-based Linde, and Modified criteria are respectively implemented in the damage model to predict crush behaviors of corrugated plate and square tube. To develop failure criteria, effects of shear coefficients and exponents in the Modified and Maximum-stress criteria on damage mechanisms of corrugated plate are discussed. Results show that numerical predictions successfully capture both of experimental failure modes and load–displacement responses. The Modified criterion and particularly Maximum-stress criterion are found to be more appropriate for present crush models of corrugated plate and square tube. When increasing the failure index, the crushing load is decreased, which also causes premature material failure. The shear coefficient and exponents have dramatic influence on the crushing load. Overall, an insight into the quantitative relation of failure initiation is obtained.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 157 ◽  
Author(s):  
Seyed Rahimian Koloor ◽  
Atefeh Karimzadeh ◽  
Noorfaizal Yidris ◽  
Michal Petrů ◽  
Majid Ayatollahi ◽  
...  

Composite structures are made of multidirectional (MD) fiber-reinforced polymer (FRP) composite laminates, which fail due to multiple damages in matrix, interface, and fiber constituents at different scales. The yield point of a unidirectional FRP composite is assumed as the lamina strength limit representing the damage initiation phenomena, while yielding of MD composites in structural applications are not quantified due to the complexity of the sequence of damage evolutions in different laminas dependent on their angle and specification. This paper proposes a new method to identify the yield point of MD composite structures based on the evolution of the damage dissipation energy (DDE). Such a characteristic evolution curve is computed using a validated finite element model with a mesoscale damage-based constitutive model that accounts for different matrix and fiber failure modes in angle lamina. The yield point of composite structures is identified to correspond to a 5% increase in the initial slope of the DDE evolution curve. The yield points of three antisymmetric MD FRP composite structures under flexural loading conditions are established based on Hashin unidirectional (UD) criteria and the energy-based criterion. It is shown that the new energy concept provides a significantly larger safe limit of yield for MD composite structures compared to UD criteria, in which the accumulation of energy dissipated due to all damage modes is less than 5% of the fracture energy required for the structural rupture.


2017 ◽  
Vol 27 (7) ◽  
pp. 963-978 ◽  
Author(s):  
Hadi Bakhshan ◽  
Ali Afrouzian ◽  
Hamed Ahmadi ◽  
Mehrnoosh Taghavimehr

The present work aims to obtain failure loads for open-hole unidirectional composite plates under tensile loading. For this purpose, a user-defined material model in the finite element analysis package, ABAQUS, was developed to predict the failure load of the open-hole composite laminates using progressive failure analysis. Hashin and modified Yamanda-Sun’s failure criteria with complete and Camanho’s material degradation model are studied. In order to achieve the most accurate predictions, the influence of failure criteria and property degradation rules are investigated and failure loads and failure modes of the composites are compared with the same experimental test results from literature. A good agreement between experimental results and numerical predictions was observed.


2013 ◽  
Vol 325-326 ◽  
pp. 123-127
Author(s):  
Zi Zhen Cao ◽  
Ji Feng Zhang ◽  
Yun Wan ◽  
Yong Gang Xie

A three-dimensional progressive damage model is proposed to predict the open-hole tensile strength of Glare laminates. For the glass fiber reinforced epoxy the user subroutine UMAT is employed for description of the failure modes, such as matrix cracking and fiber failure. Behavior of the delamination between plies of the laminate is described using cohesive elements. Laminates with a rhombic hole, a square hole and a circular hole are taken into consideration separately. The results obtained by the present solution approach are validated with those available in the literatures.


2014 ◽  
Vol 513-517 ◽  
pp. 235-237
Author(s):  
Shi Yang Zhao ◽  
Pu Xue

In order to effectively describe the damage process of composite laminates and reduce the complexity of material model, a mixed damage model based on Linde Criteria and Hashin Criteria is proposed for prediction of impact damage in the study. The mixed damage model can predict baisc failure modes, including fiber fracture, matrix tensile damage, matrix compressive damage. Fiber damage and matrix damage in compression are described based on the progressive damage mechanics; and matrix damage in tension is described based on Continuous Damage Mechanics (CDM). Meanwhile, for interlaminar delamination, damage is described by cohesive model. A finite element model is established to analyze the damage process of composite laminate. A good agreement is got between damage predictions and experimental results.


Sign in / Sign up

Export Citation Format

Share Document