Fabrication of Al5083 surface hybrid nanocomposite reinforced by CNTs and Al2O3 nanoparticles using friction stir processing

2019 ◽  
Vol 54 (8) ◽  
pp. 1107-1117 ◽  
Author(s):  
Farhad Ostovan ◽  
Sattar Amanollah ◽  
Meysam Toozandehjani ◽  
Ehsan Shafiei

In the present study, friction stir processing was adopted for surface treatment of Al5083 by incorporation of CNT and Al2O3 nanoparticles. Microstructural, mechanical and tribological properties of the surface of Al5083/CNT, Al5083/Al2O3 and hybrid Al5083/CNT/Al2O3 nanocomposite were investigated and compared. The friction stir processing yielded a nearly uniform dispersion of CNTs and Al2O3 nanoparticles, irrespective of nanoparticle reinforcements and their weight fraction. Microstructural observations revealed that Al2O3 nanoparticles have dispersed in different zones including intra-grain and grain boundary zones while, CNTs are pinned into grain boundaries during friction stir processing. From mechanical point of view, hybridization of CNT/Al2O3 enhances the hardness (126 HV at stirred zone), strength (UTS of ∼487 MPa) and also wear resistance of Al5083/CNT/Al2O3 nanocomposites. The enhancement is attributed to the presence and combination of features of both CNT and Al2O3 nanoparticles which are different in nature; one spherical oxide and one nanotube.

Author(s):  
Mostafa Akbari ◽  
Parviz Asadi

Multi-walled carbon nanotube/aluminum composites are fabricated on Al–Si cast alloy employing friction stir processing. First, the microstructure of the stir zone, as well as the effect of process parameters on the size of silicon particles, is investigated. Then, the process is numerically simulated using a thermo-mechanically coupled three-dimensional finite element method model. Material flow, as the primary reason for the dispersion of reinforcing particles, is considered in the numerical model, and proper conditions to obtain a uniform dispersion of multi-walled carbon nanotubes are determined. Scanning electron microscope analysis is carried out to consider the particle distribution in the texture of the stir zone. The results show that the particle distribution improves significantly by changing the tool rotation direction between the friction stir processing passes. The hardness test is accomplished on the cross-section of the friction stir processed specimens, and finally, the wear test is performed to compare the wear resistance of the composites with the base alloy. The results show that the wear resistance and hardness of the produced composites are considerably enhanced compared to the base alloy.


2015 ◽  
Vol 787 ◽  
pp. 421-425
Author(s):  
A. Vignesh ◽  
V.G. Vijay Prakaash ◽  
A.K. Lakshminarayanan

An attempt is made to modify the surface metallurgically and enhance the wear resistance of AISI 316LN austenitic stainless steel using friction stir processing. Friction stir welding tools made up of tungsten based alloy with pin and pinless configuration was used. Fine equiaxed grains were observed in the friction stir processed zone irrespective of tool configuration used. Dry sliding wear resistance was evaluated using pin-on-disc wear tester and it is found that, the friction stir processed zone showed superior wear resistance compared to the base metal. Microstructure, micro hardness, and worn surfaces were used to correlate the results obtained.


2021 ◽  
Author(s):  
Saeed Ahmadifard ◽  
Nasir Shahin ◽  
Mojtaba Vakili-azghandi ◽  
Shahab Kazemi

Abstract This study investigates the effects of incorporating Ti3AlC2 MAX phase into Al7075-T6 alloy by friction stir processing as well as adding Al2O3 nanoparticles to obtain a surface hybrid nanocomposite. These composites were successfully prepared by friction stir processing with a rotational speed of 1000 rpm and a travel speed of 28 mm/min after 3 passes. Optical, atomic force and scanning electron microscopy as well as microhardness, tensile and wear tests utilized to characterize the fabricated surface hybrid nanocomposites. Results showed that the maximum tensile strength and hardness value were achieved for Al-100% Al2O3 composite due to more grain refinement and effective dispersion of nanoparticles. Due to its laminar structure, Ti3AlC2 MAX phase enhanced better tribological characterization whereas Al2O3 nanoparticles cause better mechanical properties. Scanning electron microscopy tests revealed that the wear mechanism changes from adhesive for Al7075 alloy to adhesive-abrasive for the nanocomposite specimens.


2015 ◽  
Vol 642 ◽  
pp. 55-59 ◽  
Author(s):  
Shueiwan Henry Juang ◽  
Liang Jing Fan ◽  
Hsu Shuo Chang

In this study, the multi-pass friction stir processing (MP-FSP) technique was performed on ADC6 aluminum alloy + 5 wt% fly ash composite (A5FC) castings to increase their surface area. The dry sliding wear behaviors of the ADC6 alloy, A5FCs, and MP-FSPed A5FCs were evaluated. Dry sliding wear tests were performed using a ring-on-washer machine at a constant rotation speed of 100 rpm for 60 min, and the normal load was 10, 20, 30, and 40 N. The results showed that the MP-FSPed A5FCs had the lowest wear rates in the load range from 10 to 40 N, and adhesive wear was the major wear mechanism in these tests. The increased wear resistance was mainly due to grain refinement and elimination of casting defects after subjecting the ash composite to MP-FSP. The microstructure of the MP-FSPed A5FCs reveals that the sizes of the added raw fly ash particles decreased from micro-to nanoscale levels, and the nanoscale fly ash was uniformly dispersed in the aluminum matrix.


2019 ◽  
Vol 360 ◽  
pp. 121-132 ◽  
Author(s):  
Mohammad Mahdi Jalilvand ◽  
Yousef Mazaheri ◽  
Akbar Heidarpour ◽  
Masoud Roknian

2010 ◽  
Vol 154-155 ◽  
pp. 1761-1766 ◽  
Author(s):  
Mohsen Barmouz ◽  
M.K. Besharati Givi ◽  
Jalal Jafari

Friction stir processing (FSP) is a metal-working technique that causes microstructural modification and change in the upper surface of metal components. In this work the effects of tool pin profile on the microstructure and mechanical behavior of reinforced SiC particles metal matrix composites (MMCs) produced by friction stir processing were studied. Optical microscopy (OM) and Scanning electron microscopy (SEM) was employed to carry out the microstructural observations. Vickers Microhardness Machine used for microhardness evaluation. Results show that, tool pin profile play a major role in improvement of the surface quality, SiC particles dispersion in pure copper matrix, hardness behavior and wear resistance. Two different tool pin profile (straight cylindrical and square) were used to perform the process. It was found that, straight cylindrical tool pin profile led to finer grains, uniform dispersion of SiC particles, higher microhardness and wear resistance values.


2014 ◽  
Vol 316 ◽  
pp. 501-507 ◽  
Author(s):  
A. Rahbar-kelishami ◽  
A. Abdollah-zadeh ◽  
M.M. Hadavi ◽  
R.A. Seraj ◽  
A.P. Gerlich

Sign in / Sign up

Export Citation Format

Share Document