Microstructure and thermal properties of nickel-coated carbon fibers/aluminum composites

2020 ◽  
Vol 54 (19) ◽  
pp. 2539-2548
Author(s):  
Li-Fu Yi ◽  
Takashi Yamamoto ◽  
Tetsuhiko Onda ◽  
Zhong-Chun Chen

Electroless nickel-coated carbon fibers/aluminum composites were prepared by spark plasma sintering, and the effect of nickel coating on microstructure and thermal properties of the composites has been investigated. Nickel coating on carbon fibers resulted in more homogeneous distributions of carbon fibers in aluminum matrix, higher relative density of carbon fibers/aluminum composites, and stronger interfacial bonding between carbon fibers and aluminum. Microstructural observations exhibited that the majority of carbon fibers were randomly distributed on the sections (X-Y direction) perpendicular to spark plasma sintering pressing direction (Z direction), thus leading to an anisotropic behavior in thermal conductivity of the composites. The thermal conductivity values in the X-Y direction of the carbon fibers/aluminum composites were much higher than those in the Z direction. As a result, the nickel-coated carbon fibers/aluminum composites with a nickel-coating thickness of ∼0.2 µm showed higher thermal conductivity and lower coefficient of thermal expansion values in comparison with those of the uncoated carbon fibers/aluminum samples.

2010 ◽  
Vol 638-642 ◽  
pp. 2115-2120 ◽  
Author(s):  
Kiyoshi Mizuuchi ◽  
Kanryu Inoue ◽  
Yasuyuki Agari ◽  
Shinji Yamada ◽  
Motohiro Tanaka ◽  
...  

Diamond-particle-dispersed copper (Cu) matrix composites were fabricated from Cu-coated diamond particles by spark plasma sintering (SPS) process, and the microstructure and thermal properties of the composites fabricated were examined. These composites can well be consolidated in a temperature range between 973K and 1173K and scanning electron microscopy detects no reaction at the interface between the diamond particle and the Cu matrix. The relative packing density of the diamond-Cu composite increases with increasing sintering temperature and holding time, reaching 99.2% when sintered at a temperature of 1173K for a holding time of 2.1ks. Thermal conductivity of the diamond-Cu composite containing 43.2 vol. % diamond increases with increasing relative packing density, reaching a maximum (654W/mK) at a relative packing density of 99.2%. This thermal conductivity is 83% the theoretical value estimated by Maxwell-Eucken equation. The coefficient of thermal expansion of the composites falls in the upper line of Kerner’s model, indicating strong bonding between the diamond particle and the Cu matrix in the composite.


2018 ◽  
Vol 50 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Nouari Saheb ◽  
Muhammad Khan

In this work, compressive and thermal properties of aluminum, milled aluminum, and Al-10Al2O3 composite processed via ball milling (BM) and spark plasma sintering (SPS) were investigated. The microstructural features of powders and sintered samples were characterized using optical and scanning electron microscopy. A universal testing machine was used to determine the compressive properties of the consolidated samples. The thermal conductivity and coefficient of thermal expansion of the developed materials were characterized using a hot disc thermal constant analyzer and a dilatometer, respectively. The Al-10Al2O3 composite possessed hardness of 1309.7 MPa, yield strength of 311.4 MPa, and compressive strength of 432.87 MPa compared to hardness of 326.3 MPa, yield strength of 74.33 MPa, and compressive strength of 204.43 MPa for aluminum. The Al-10Al2O3 composite had thermal conductivity value 81.42 W/mK compared to value of 198.09 W/mK for aluminum. In the temperature range from 373 K to 723 K, the composite had lower CTEs ranging from 10 ? 10?6 to 22 ? 10?6/K compared to 20 ? 10?6 to 30 ? 10?6/K for aluminum.


2013 ◽  
Vol 873 ◽  
pp. 361-365 ◽  
Author(s):  
Wei Chen Zhai ◽  
Zhao Hui Zhang ◽  
Fu Chi Wang ◽  
Shu Kui Li

Si/Al composites with different Si particle sizes were fabricated using spark plasma sintering process for electronic packaging. The density, thermal conductivity, coefficient of thermal expansion and flexural strength of the composites were investigated. Effect of Si particle size on structure and properties of the Si/Al composites were studied. The results showed that the Si/Al composites synthesized by spark plasma sintering were composed of Si and Al. Al was uniformly distributed among the Si phase, leading to a high thermal conductivity (>120 W/m·k). The relative density of the Si/Al composites decreased with increasing Si particle size. Small Si particle size produced small grains, leading to a low coefficient of thermal expansion and a high strength. There is an optimal matching among the thermal conductivity, coefficient of thermal expansion and flexural strength when the Si particle size was 44 um.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 239 ◽  
Author(s):  
Kwangjae Park ◽  
Dasom Kim ◽  
Kyungju Kim ◽  
Hansang Kwon

Aluminum (Al)/stainless steel (SUS) clad materials were fabricated via the process of spark plasma sintering (SPS) using Al powder/bulk and an SUS sheet. Three Al/SUS clad types were fabricated: powder/bulk (P/B), bulk/bulk (B/B), and bulk/powder/bulk (B/P/B). During the SPS, Al and SUS reacted with each other, and intermetallic compounds were created in the clads. The thermal conductivity and thermal-expansion coefficient were measured using a laser flash analyzer and dynamic mechanical analyzer, respectively. The Al/SUS (P/B) clad had a thermal conductivity of 159.5 W/mK and coefficient of thermal expansion of 15.3 × 10−6/°C. To analyze the mechanical properties, Vickers hardness and three-point bending tests were conducted. The Al/SUS (P/B) clad had a flexural strength of about 204 MPa. The Al/SUS clads fabricated via SPS in this study are suitable for use in applications in various engineering fields requiring materials with high heat dissipation and high heat resistance.


2007 ◽  
Vol 352 ◽  
pp. 227-231 ◽  
Author(s):  
Qiang Shen ◽  
Z.D. Wei ◽  
Mei Juan Li ◽  
Lian Meng Zhang

AlN ceramics doped with yttrium oxide (Y2O3) as the sintering additive were prepared via the spark plasma sintering (SPS) technique. The sintering behaviors and densification mechanism were mainly investigated. The results showed that Y2O3 addition could promote the AlN densification. Y2O3-doped AlN samples could be densified at low temperatures of 1600-1700oC in 20-25 minutes. The AlN samples were characterized with homogeneous microstructure. The Y-Al-O compounds were created on the grain boundaries due to the reactions between Y2O3 and Al2O3 on AlN particle surface. With increasing the sintering temperature, AlN grains grew up, and the location of grain boundaries as well as the phase compositions changed. The Y/Al ratio in the aluminates increased, from Y3Al5O12 to YAlO3 and to Y4Al2O9. High-density, the growth of AlN grains and the homogenous dispersion of boundary phase were helpful to improve the thermal conductivity of AlN ceramics. The thermal conductivity of 122Wm-1K-1 for the 4.0 mass%Y2O3-doped AlN sample was reached.


2014 ◽  
Vol 722 ◽  
pp. 25-29 ◽  
Author(s):  
Q.L. Che ◽  
X.K. Chen ◽  
Y.Q. Ji ◽  
Y.W. Li ◽  
L.X. Wang ◽  
...  

The carbide forming is proposed to improve interfacial bonding between diamond particles and copper-matrix for diamond/copper composites. The volume fraction of diamond and minor titanium are optimized. The microstructures, thermal properties, interface reaction production and its effect of minor titanium on the properties of the composites are investigated. The results show that the bonding force and thermal conductivity of the diamond/Cu-Ti alloys composites is much weaker and lower than that of the coated-diamond/Cu. the thermal conductivity of coated-60 vol. % diamond/Cu composites is 618 W/m K which is 80 % of the theoretical prediction value. The high thermal conductivity has been achieved by forming the titanium carbide at diamond/copper interface to gain a good interface.


2014 ◽  
Vol 2 (38) ◽  
pp. 15829-15835 ◽  
Author(s):  
Kriti Tyagi ◽  
Bhasker Gahtori ◽  
Sivaiah Bathula ◽  
A. K. Srivastava ◽  
A. K. Shukla ◽  
...  

Intrinsically ultra-low thermal conductivity and electrical transport in single-phase Cu2SbSe3 synthesized employing a solid state reaction and spark plasma sintering.


Sign in / Sign up

Export Citation Format

Share Document