A constitutive model for materials with directionally strain locking microstructures

2021 ◽  
pp. 002199832110187
Author(s):  
Nicholas Payne ◽  
Kishore Pochiraju

Strain locking materials have a limit to the extent to which they can be stretched along one or more axes. The strain limit can be due to the reorientation of stiffening phases at microstructural or molecular scales along the direction of the applied load. Both natural and manmade composites can exhibit such a response when initially wavy fibers or other corrugated structures gradually straighten and limit the extensibility of the material. A new constitutive model is developed for materials that exhibit strain locking along a preferred axis. The model assumes the microstructure is composed of linear elastic material with embedded zig-zag shaped fiber phase that is oriented along the preferred locking axis. The response is governed by a complementary energy density function which is partitioned into separate portions that represent the complementary energies within the fibers and the matrix respectively. A new, nonlinear form for the complementary energy density function of strain locking fibers is derived based on a relationship between the applied stress and the strain of the fiber. An example material that exhibits strain locking longitudinally but is transversely linear-elastic is considered. The behaviors of the example material under tension and compression along the longitudinal and transverse axis are illustrated. A comparison is made with FEM modeling of a strain locking microstructure explicitly fitting the constitutive model parameters with both FEM simulated and experimental data for real material.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1393
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a general temperature-dependent stress–strain constitutive model for polymer-bonded composite materials, allowing for the prediction of deformation behaviors under tension and compression in the testing temperature range. Laboratory testing of the material specimens in uniaxial tension and compression at multiple temperatures ranging from −40 ∘C to 75 ∘C is performed. The testing data reveal that the stress–strain response can be divided into two general regimes, namely, a short elastic part followed by the plastic part; therefore, the Ramberg–Osgood relationship is proposed to build the stress–strain constitutive model at a single temperature. By correlating the model parameters with the corresponding temperature using a response surface, a general temperature-dependent stress–strain constitutive model is established. The effectiveness and accuracy of the proposed model are validated using several independent sets of testing data and third-party data. The performance of the proposed model is compared with an existing reference model. The validation and comparison results show that the proposed model has a lower number of parameters and yields smaller relative errors. The proposed constitutive model is further implemented as a user material routine in a finite element package. A simple structural example using the developed user material is presented and its accuracy is verified.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2731
Author(s):  
Ameya Rege

The macroscopic mechanical behavior of open-porous cellular materials is dictated by the geometric and material properties of their microscopic cell walls. The overall compressive response of such materials is divided into three regimes, namely, the linear elastic, plateau and densification. In this paper, a constitutive model is presented, which captures not only the linear elastic regime and the subsequent pore-collapse, but is also shown to be capable of capturing the hardening upon the densification of the network. Here, the network is considered to be made up of idealized square-shaped cells, whose cell walls undergo bending and buckling under compression. Depending on the choice of damage criterion, viz. elastic buckling or irreversible bending, the cell walls collapse. These collapsed cells are then assumed to behave as nonlinear springs, acting as a foundation to the elastic network of active open cells. To this end, the network is decomposed into an active network and a collapsed one. The compressive strain at the onset of densification is then shown to be quantified by the point of intersection of the two network stress-strain curves. A parameter sensitivity analysis is presented to demonstrate the range of different material characteristics that the model is capable of capturing. The proposed constitutive model is further validated against two different types of nanoporous materials and shows good agreement.


Author(s):  
Mircea Bîrsan

AbstractIn this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the integration over the thickness and obtain a consistent shell model of order $$ O(h^5) $$ O ( h 5 ) with respect to the shell thickness h. We derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The obtained form of the shell strain energy density is compared with other previous variants from the literature, and the advantages of our constitutive model are discussed.


2010 ◽  
Vol 25 (27) ◽  
pp. 2325-2332 ◽  
Author(s):  
PUXUN WU ◽  
HONGWEI YU

The f(G) gravity is a theory to modify the general relativity and it can explain the present cosmic accelerating expansion without the need of dark energy. In this paper the f(G) gravity is tested with the energy conditions. Using the Raychaudhuri equation along with the requirement that the gravity is attractive in the FRW background, we obtain the bounds on f(G) from the SEC and NEC. These bounds can also be found directly from the SEC and NEC within the general relativity context by the transformations: ρ → ρm + ρE and p → pm + pE, where ρE and pE are the effective energy density and pressure in the modified gravity. With these transformations, the constraints on f(G) from the WEC and DEC are obtained. Finally, we examine two concrete examples with WEC and obtain the allowed region of model parameters.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 252
Author(s):  
Rongchuang Chen ◽  
Shiyang Zhang ◽  
Xianlong Liu ◽  
Fei Feng

To investigate the effect of hot working parameters on the flow behavior of 300M steel under tension, hot uniaxial tensile tests were implemented under different temperatures (950 °C, 1000 °C, 1050 °C, 1100 °C, 1150 °C) and strain rates (0.01 s−1, 0.1 s−1, 1 s−1, 10 s−1). Compared with uniaxial compression, the tensile flow stress was 29.1% higher because dynamic recrystallization softening was less sufficient in the tensile stress state. The ultimate elongation of 300M steel increased with the decrease of temperature and the increase of strain rate. To eliminate the influence of sample necking on stress-strain relationship, both the stress and the strain were calibrated using the cross-sectional area of the neck zone. A constitutive model for tensile deformation was established based on the modified Arrhenius model, in which the model parameters (n, α, Q, ln(A)) were described as a function of strain. The average deviation was 6.81 MPa (6.23%), showing good accuracy of the constitutive model.


2011 ◽  
Vol 311-313 ◽  
pp. 301-308
Author(s):  
Shou Hong Han ◽  
Zhen Hua Lu ◽  
Yong Jin Liu

In order to investigate the multi-axial mechanical properties of a kind of PU (polyurethane) foam, some experiments in different loading conditions including uni-axial tension, uni-axial compression, hydrostatic compression and three-point bending were conducted. It is shown that the hydrostatic component influences yield behavior of PU foam, the yield strength and degree of strain hardening in hydrostatic compression exceed those for uni-axial compression. In terms of the differential hardening constitutive model, the evolution of PU foam yield surface and plastic hardening laws were fitted from experimental data. A finite element method was applied to analyze the quasi-static responses of the PU foam sandwich beam subjected to three-point bending, and good agreement was observed between experimental load-displacement responses and computational predictions, which validated the multi-axial loading methods and stress-strain constitutive model parameters. Moreover, effects of two foam models applied to uni-axial loading and multi-axial loading conditions were analyzed and compared with three-point bending tests and simulations. It is found that the multi-axial constitutive model can bring more accurate prediction whose parameters are obtained from the tests above mentioned.


1981 ◽  
Vol 52 (5) ◽  
pp. 3674-3687 ◽  
Author(s):  
Willem Klip ◽  
Lloyd L. Hefner ◽  
Thomas C. Donald ◽  
David N. S. Reeves ◽  
Jane B. Hazelrig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document