Effect of MWCNT addition on the optical band gap of PVA/CS transient biocomposites

2021 ◽  
pp. 002199832110370
Author(s):  
Ömer Bahadır Mergen

In recent years, as a result of increasing environmental concerns, biodegradable materials have gained great attention. With the rapid development of electronic technology, the importance of innovation and development of low-cost, sustainable, transient bioelectronics materials is increasing. In this research, the preparation of Poly(Vinyl Alcohol) (PVA), Chitosan (CS), and Multi-Walled Carbon nanotube (MWCNT) biocomposite films have been described. The solution mixing, ultrasonic mixing, and spin coating techniques were used to prepare the PVA/CS/MWCNT biocomposite thin films. UV–Vis absorption spectroscopy and two-point probe resistivity measurement techniques were used to study the optical and electrical properties of the biocomposite thin films. Optical band gap energies ( Eg) of PVA/CS/MWCNT biocomposites were obtained using the Tauc and Absorbance Spectrum Fitting (ASF) methods. Results obtained with both methods were found to be exactly the same. Experimental results have shown that with increasing MWCNT concentration, electrical conductivity (σ) increases from 1.75x10−16 S to 2.94x10−3 S, and Eg decreases significantly. At the same time, the fundamental optical parameters such as band tail (Urbach) energy ( Eu), refractive index ( n), absorption ( α), and extinction ( k) coefficient of the PVA/CS/MWCNT biocomposites were investigated in the UV-VIS range. The improvement observed in the optical and electrical properties of PVA/CS/MWCNT biocomposite films shows that these composites could be used as bioelectronics materials.

2001 ◽  
Vol 15 (17n19) ◽  
pp. 737-740 ◽  
Author(s):  
VERÓNICA ESTRELLA ◽  
ROGELIO MEJÍA ◽  
M.T.S. NAIR ◽  
P.K. NAIR

Tl2S thin films (0.05μm-1μm) were deposited from chemical bath containing thallium nitrate and thiourea. These films possess an indirect optical band gap of about 1 eV. Multi-layer films: Tl2S-CuS , Tl2S-Bi2S3 and Tl2S-Sb2S3 films were prepared, which when annealed at 300°C led to the formation of CuTlS2 (tetragonal, E g.dir = 1.25 eV), Bi2Tl4S5 (orthorhombic, E g.dir = 2.05 eV), TlSbS2 (triclinic, E g.dir = 1.92 eV), as confirmed by XRD. Optical band gap of 1.4 eV - 2 eV suggests possible application as absorber materials in solar cell.


2020 ◽  
Vol 58 (3) ◽  
pp. 190-194 ◽  
Author(s):  
Yu-Sung Kim ◽  
Jin-Young Choi ◽  
Yun-je park ◽  
Su-Hyeon Choe ◽  
Byung-Chul Cha ◽  
...  

Transparent conductive ZnO 50 nm/Ag 10 nm/SnO<sub>2</sub> 50 nm (ZAS) tri-layer films were deposited on glass substrates by magnetron sputtering, and then the surface was subjected to intense electron beam irradiation to investigate the effects of electron irradiation on the structural, optical, and electrical properties of the films. After deposition, the ZAS thin films were electron-irradiated for 10 minutes, with varying electron incident energies of 300, 600, and 900 eV. The films that were electron irradiated at 900 eV showed higher optical transmittance of 83.6% in the visible wavelength region, and lower resistivity, of 4.75 × 10<sup>-5</sup> Ωcm, than the other films. From the observed electrical properties and optical band gap, it was concluded that the optical band gap increased with the incident electron energy up to 600 eV. The optical band gap increased from 4.12 to 4.23 eV, with carrier density increasing from 7.09 to 8.55 × 10<sup>21</sup> cm<sup>−3</sup>. However, the film electron irradiated at 900 eV showed a decrease in optical band gap energy of 4.16 eV due to the decreased carrier density of 8.25 × 10<sup>21</sup> cm<sup>−3</sup>. The figure of merit revealed that the ZAS thin films electron-irradiated at 900 eV had higher optical and electrical performance than the other films prepared in this study.


2013 ◽  
Vol 37 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Chitra Das ◽  
Jahanara Begum ◽  
Tahmina Begum ◽  
Shamima Choudhury

Effect of thickness on the optical and electrical properties of gallium arsenide (GaAs) thin films were studied. The films of different thicknesses were prepared by vacuum evaporation method (~10-4 Pa) on glass substrates at a substrate temperature of 323 K. The film thickness was measured in situ by a frequency shift of quartz crystal. The thicknesses were 250, 300 and 500 nm. Absorption spectrum of this thin film had been recorded using UV-VIS-NIR spectrophotometer in the photon wavelength range of 300 - 2500 nm. The values of some important optical parameters of the studied films (absorption coefficient, optical band gap energy and refractive index; extinction co-efficient and real and imaginary parts of dielectric constant) were determined using these spectra. Transmittance peak was observed in the visible region of the solar spectrum. Here transmittance showed better result when thicknesses were being increased. The optical band gap energy was decreased by the increase of thickness. The refractive index increased by increasing thickness while extinction co-efficient and real and imaginary part of dielectric constant decreased. DOI: http://dx.doi.org/10.3329/jbas.v37i1.15684 Journal of Bangladesh Academy of Sciences, Vol. 37, No. 1, 83-91, 2013


2012 ◽  
Vol 710 ◽  
pp. 739-744 ◽  
Author(s):  
Anup Kumar ◽  
Pawan Heera ◽  
P. B Baraman ◽  
Raman Sharma

The optical constants, like absorption coefficient (α), optical band gap (Eg) and refractive index (n), in Se80.5Bi1.5Te18-yAgy (y= 0, 1.0 and1.5) thin films are calculated using well known Swanepoel’s method in the spectral range of 600-2000 nm. The optical band gap has been estimated by using Tauc’s extrapolation method and is found to increase with increase in Ag content. The present results shows that the large value of nonlinear refractive index and good transparency of these thin films will make them a very promising materials for optical integrated circuits in the optical communication systems.


2005 ◽  
Vol 865 ◽  
Author(s):  
Bin Yang ◽  
Yunbin He ◽  
Angalika Polity ◽  
Bruno K. Meyer

AbstractThe transparent conducting CuInO2 thin films were prepared by radio frequency (RF) reactive sputtering and post growth annealing. A study of structural, optical, and electrical properties was performed on the films. The crystalline phase in the films was identified to be the delafossite structure. The optical properties, such as the wavelength dependence of the transmittance and the band gap energy, were determined. The average transmittance is 70% in the wavelength range of 400-1100 nm and the band gap is ˜3.7 eV. The temperaturedependence of electrical conductivity in the CuInO2 delafossite thin films was measured from 70 to 400K. The resistivity, carrier density, and mobility of the thin films at 300K were 1.8x101 Δcm, 1.6x1019 cm-3 and 2x10-1 cm2/Vs, respectively. Hall coefficient indicated that the CuInO2 thin films are n-type conductors. The electrical conductivity showed semiconducting type at room temperature.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Pengyi Zhao ◽  
Shuying Cheng

Cu2SnS3is a narrow-band-gap semiconductor material. It has suitable optical and electrical properties which make it a potential absorber layer of solar cells. In this paper, Cu2SnS3thin films were successfully obtained by sulfurizing CuSnS2thin films deposited by RF magnetron sputtering at temperatures of 350–425°C for 2 h in an atmosphere of hydrogen sulfide and nitrogen. The influence of the sulfurization temperature on the electrical and optical properties of the Cu2SnS3thin films was investigated. The experimental results show that the Cu2SnS3thin films sulfurized at a temperature of 425°C exhibit better properties than others. The mobility and resistivity of the Cu2SnS3films are 9 cm2/V·s and 3 Ω·cm, respectively. And its optical band gap is estimated to be about 1.77 eV.


Author(s):  
А.Н. Гусев ◽  
А.С. Мазинов ◽  
В.С. Гурченко ◽  
А.С. Тютюник ◽  
Е.В. Брага

The current-voltage characteristics of hybrid organic materials C48H42N6O2Zn and C54H54N6O2Zn are researched. The method of obtaining, microscopy, as well as the results of infrared spectroscopy and studies of the electrical properties of the obtained thin films of these organic materials based on zinc complexes. The results of calculating the optical band gap are presented. It was found that the resulting thin-film structures have N-shaped current-voltage characteristics.


Sign in / Sign up

Export Citation Format

Share Document