scholarly journals Expression of GRP and Its Receptor in Well-differentiated Colon Cancer Cells Correlates with the Presence of Focal Adhesion Kinase Phosphorylated at Tyrosines 397 and 407

2003 ◽  
Vol 51 (8) ◽  
pp. 1041-1048 ◽  
Author(s):  
Kristina A. Matkowskyj ◽  
Kristin Keller ◽  
Sarah Glover ◽  
Lori Kornberg ◽  
Roger Tran-Son-Tay ◽  
...  

Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are not normally expressed by epithelial cells lining the colon but are aberrantly expressed in cancer, where they act as morphogens and regulate tumor cell differentiation. Studies of colon cancer formation in mice genetically incapable of synthesizing GRP-R suggested that this receptor's morphogenic properties were mediated via focal adhesion kinase (FAK). We therefore set out to determine the presence of both total and phosphorylated forms of FAK in human colon cancer specimens as a function of tumor cell differentiation and GRP/GRP-R co-expression. Ten colon cancers containing 25 regions of distinct differentiation were randomly selected from our GI Cancer Tumor Bank. All specimens were immunohistochemically probed using antibodies recognizing GRP, GRP-R, total FAK, and FAK specifically phos-phorylated at tyrosine (Y) 397, 407, 576, 577, 861, and 925. Antibody-specific chromogen was determined by quantitative immunohistochemistry (IHC) for each region of defined differentiation. Here we confirm that GRP/GRP-R co-expression is a function of differentiation, with highest levels observed in well-differentiated tumor cells. We also show that the amount of total FAK and of FAK phosphorylated at Y397 and Y407 tightly correlates with differentiation and with the amount of GRP/GRP-R co-expression. These findings are consistent with GRP/GRP-R acting as a morphogen by activating FAK, and suggest that this occurs via phosphorylation of this enzyme at two specific tyrosine residues.

2005 ◽  
Vol 43 (4) ◽  
pp. 207-214 ◽  
Author(s):  
Jenq-Chang Lee ◽  
Ming-Chei Maa ◽  
Hsiu-Shan Yu ◽  
Jung-Hui Wang ◽  
Chia-Kuang Yen ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Binh Thanh Nguyen ◽  
Jae-Chul Pyun ◽  
Sang-Guk Lee ◽  
Min-Jung Kang

Abstract Focal adhesion kinase (FAK) is a 125 kDa protein recruited as a participant in focal adhesion dynamics and serves as a signaling scaffold for the assembly and subsequent maturation of focal contact. Identification of new FAK binding proteins could reveal potential signaling targets and contribute to further development of therapeutic drugs in the treatment of colon cancer. Here, we applied a functional proteomic strategy to identify proteins that interact with FAK in human colon cancer cell line HCT-116. Proteins were targeted by coimmunoprecipitation with an anti-FAK antibody and resolved on 1D-SDS-PAGE. The gel was excised, reduced, alkylated, and trypsin digested. Tryptic peptides were separated by nano-LC-MS/MS by an LTQ-Orbitrap-Velos spectrometer. We identified 101 proteins in the immunocomplex under epithelial growth factor (EGF) stimulation. Three proteins, zyxin, nesprin-1, and desmoplakin, were discovered and validated using reciprocal immunoprecipitation and Western blot analysis. Then, we sought to study the biological relevance of these proteins by siRNA transfection of HCT-116 cells. According to the results, zyxin might play a central role as an upstream regulator to mediate critical cancer-related signaling pathways. Zyxin and nesprin-1 depletion significantly impaired cell migration and invasion capabilities. Additionally, we performed ELISA assays on serum samples from patients with colon cancer instead of cell models to quantify the protein levels of zyxin and nesprin-1. Our results suggested that zyxin and nesprin-1 are not only promising therapeutic targets but also potential diagnostic biomarkers for colon cancer.


2007 ◽  
Vol 292 (1) ◽  
pp. G182-G190 ◽  
Author(s):  
Lauren Taglia ◽  
Damien Matusiak ◽  
Kristina A. Matkowskyj ◽  
Richard V. Benya

Gastrin-releasing peptide (GRP) and its receptor (GRPR) act as morphogens when expressed in colorectal cancer (CRC), promoting the assumption of a better differentiated phenotype by regulating cell motility in the context of remodeling and retarding tumor cell metastasis by enhancing cell-matrix attachment. Although we have shown that these processes are mediated by focal adhesion kinase (FAK), the downstream target(s) of GRP-induced FAK activation are not known. Since osteoblast differentiation is mediated by FAK-initiated upregulation of ICAM-1 (Nakayamada S, Okada Y, Saito K, Tamura M, Tanaka Y. J Biol Chem 278: 45368–45374, 2003), we determined whether GRP-induced activation of FAK alters ICAM-1 expression in CRC and, if so, determined the contribution of ICAM-1 to mediating GRP's morphogenic properties. Caco-2 and HT-29 cells variably express GRP/GRPR. These cells only express ICAM-1 when GRPR are present. In human CRC, GRPR and ICAM-1 are only expressed by better differentiated tumor cells, with ICAM-1 located at the basolateral membrane. ICAM-1 expression was only observed subsequent to GRPR signaling via FAK. To study the effect of ICAM-1 expression on tumor cell motility, CRC cells expressing GRP, GRPR, and ICAM-1 were cultured in the presence and absence of GRPR antagonist or monoclonal antibody to ICAM-1. CRC cells engaged in directed motility in the context of remodeling and were highly adherent to the extracellular matrix, only in the absence of antagonist or ICAM-1 antibody. These data indicate that GRP upregulation of ICAM-1 via FAK promotes tumor cell motility and attachment to the extracellular matrix.


2016 ◽  
Vol 478 (2) ◽  
pp. 739-745 ◽  
Author(s):  
Bin Li ◽  
Peng Chen ◽  
Yanxiang Chang ◽  
Jingpeng Qi ◽  
Hui Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document