Environmental considerations in the development of diquat and paraquat as aquatic herbicides

1972 ◽  
Vol 7 (2) ◽  
pp. 51-54 ◽  
Author(s):  
A Calderbank

As the world's requirement for fresh water expands, so does the problem of increased aquatic weed growth due to enrichment of natural waters. Weeds impair the recreational value of lakes and streams; they also hinder navigation, block irrigation channels and cause problems in pumping stations and hydroelectric turbines; but herbicides for their control must be safe and not introduce environmental hazards. Diquat and paraquat have many advantages for this purpose.

1918 ◽  
Vol 11 (1-10) ◽  
pp. 557-571
Author(s):  
Morris Wells

Carbon monoxide and carbon dioxide are both present in the waste that is diverted into natural waters by many works where illuminating gas is manufactured and, since the waste as a whole is known to be exceedingly poisonous to aquatic organisms, the role played in its toxic action by the two gases in question was investigated at the time that the many other organic substances of which the waste is composed were studied by Shelford. The investigation has shown that both of the gases are poisonous to fresh-water fishes even when present in the water in relatively small proportions, but the monoxide has been found to be by far the more deadly of the two.


Author(s):  
Never Mujere

This paper is a review of literature of water hyacinth (Eichhornia crassipes); what it is, why it is of scientific importance, problems it causes, how it can be controlled, and how it can be a source of livelihoods. The review has shown that water hyacinth is native to the Amazon Basin and one of the world's most noxious aquatic weed. Lack of natural enemies together with nutrient enriched water bodies facilitate the spread of water hyacinth in temperate, tropical and sub-tropical waters. The weed causes a variety of socio-economic and environmental problems when its rapid mat-like proliferation covers areas of fresh water. With regards to its control, the mechanical method is the most cost-effective, followed by the biological, manual and chemical methods. Regardless of its problems, water hyacinth has been found to be useful for industrial, agricultural, household and environmental purposes.


Soil Research ◽  
2008 ◽  
Vol 46 (1) ◽  
pp. 45 ◽  
Author(s):  
D. J. Houlbrooke ◽  
D. J. Horne ◽  
M. J. Hedley ◽  
V. O. Snow ◽  
J. A. Hanly

Spray irrigation of farm dairy effluent (FDE) to artificially drained land in accordance with deferred irrigation criteria causes minimal direct drainage of partially treated FDE at the time of irrigation. The influence of deferred irrigation of FDE on the subsequent nutrient enrichment of winter–spring drainage from mole and pipe systems is unknown. Research was conducted in the Manawatu region, New Zealand, to investigate the influence of deferred irrigation of FDE on the quality of water in artificial drainage. The experimental site was established on a Pallic soil (Tokomaru silt loam) at the No. 4 dairy farm at Massey University, Palmerston North. There were 6 plots (each 40 m by 40 m), each with an isolated mole and pipe drainage network. Four of the plots received fertiliser according to the farm’s fertiliser program (non-effluent plots), while the other 2 plots received applications of FDE according to the deferred irrigation scheduling criteria (effluent plots). All of the plots were subject to the farm’s standard grazing management.The average concentrations of N and P in the 2003 winter drainage (average 236 mm) from both the non-effluent and FDE irrigated plots were well above the threshold concentrations that stimulate aquatic weed growth in fresh water bodies. Annual nutrient losses of 31.4 kg N ha/year and 0.65 kg P ha/year in drainage were recorded for non-effluent plots. Deferred irrigation of FDE in the summer period did not increase the loss of N in winter–spring drainage (N loss from effluent plots was 31.1 kg N ha/year) but did cause a significant increase (P < 0.001) in total P in drainage (an additional 1.03 kg P/ha, c. 160% of losses from non-effluent plots, a loss of 3.3% of applied P). Furthermore, an irrigation of FDE to near-saturated soil in mid September resulted in the direct drainage of partially treated effluent, and hence, N and P concentrations in drainage were 6–10-fold greater than those that would normally be expected from drainage events induced by winter–spring rainfall. This illustrates the importance of scheduling FDE irrigation in accordance with deferred irrigation principles.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1497 ◽  
Author(s):  
James Brinkhoff ◽  
John Hornbuckle ◽  
Jan Barton

Irrigated agriculture requires high reliability from water delivery networks and high flows to satisfy demand at seasonal peak times. Aquatic vegetation in irrigation channels are a major impediment to this, constraining flow rates. This work investigates the use of remote sensing from unmanned aerial vehicles (UAVs) and satellite platforms to monitor and classify vegetation, with a view to using this data to implement targeted weed control strategies and assessing the effectiveness of these control strategies. The images are processed in Google Earth Engine (GEE), including co-registration, atmospheric correction, band statistic calculation, clustering and classification. A combination of unsupervised and supervised classification methods is used to allow semi-automatic training of a new classifier for each new image, improving robustness and efficiency. The accuracy of classification algorithms with various band combinations and spatial resolutions is investigated. With three classes (water, land and weed), good accuracy (typical validation kappa >0.9) was achieved with classification and regression tree (CART) classifier; red, green, blue and near-infrared (RGBN) bands; and resolutions better than 1 m. A demonstration of using a time-series of UAV images over a number of irrigation channel stretches to monitor weed areas after application of mechanical and chemical control is given. The classification method is also applied to high-resolution satellite images, demonstrating scalability of developed techniques to detect weed areas across very large irrigation networks.


2012 ◽  
Vol 26 (2) ◽  
pp. 272-278
Author(s):  
Lyn A. Gettys ◽  
William T. Haller

Bodies of water that are treated with herbicides for aquatic weed control are often used as a source of irrigation water by landowners near the water body, but there is little information regarding the effects of experimental aquatic herbicides on common garden plants. Therefore, the goal of these experiments was to identify phytotoxicity of four herbicides on vegetables frequently cultivated by home gardeners. Sweet pepper, zucchini, tomato, and bush bean were irrigated with water containing bispyribac-sodium, quinclorac, topramezone, and trifloxysulfuron-sodium to identify the herbicide concentrations that damage these garden vegetables. Experiments were conducted during 2009 and repeated in 2010. Plants were irrigated four times during an 11-d period with the equivalent of 1.27 cm of treated water during each irrigation, then irrigated with well water until they were harvested 41 d after the first herbicide treatment. Values of the concentration of herbicide expected to reduce treated plants by 10% compared with control plants (EC10) were calculated from components of nonlinear regression. Analysis of visual quality and dry weight data revealed that bush bean was the most sensitive of the vegetable plants to bispyribac-sodium, trifloxysulfuron-sodium, and topramezone, whereas the species most sensitive to quinclorac was zucchini. Exposure of bush bean to 7.1, 0.9, and 1.2 parts per billion (ppb) of bispyribac-sodium, trifloxysulfuron-sodium, and topramezone, respectively, would be expected to cause 10% reductions compared with control plants, whereas exposure of zucchini to as little as 11.0 ppb of quinclorac would be expected to cause a 10% reduction in dry weight.


2017 ◽  
Vol 4 (3) ◽  
pp. 133-136 ◽  
Author(s):  
Ishtiyaq Ahmed Najar

Aquatic plants play an important role in ecosystem functioning and services but they can also be deleterious if present in excess. The different anthropogenic activities result in accumulation of nutrients in aquatic ecosystems leads to eutrophication with massive weed growth and associated diverse adverse effects. Effective control/management of weeds in different aquatic systems is not only difficult but of short duration. The commonly used methods to manage/control the aquatic weeds are biological, chemical and mechanical, in addition to habitat manipulation. However, these methods can be highly disruptive causing adverse environmental effects and are relatively inefficient. On the other hand different species of earthworms can feed on wide range of weeds and convert them into stable product called vermicompost, rich in plant nutrients. Among different aquatic weeds the most extensively vermicomposted weed is water hyacinth (Eichhornia crassipes (Mart.) Solms), using different earthworm species. Among different earthworm species used for vermicomposting of aquatic weeds, Eisenia fetida (Savigny) is the most commonly used species. Vermicomposting is an efficient ecobiotechnological process that converts the aquatic weeds into nutrient rich material that can acts as suitable plant growth media for sustainable agroecosystems. Further large scale utilization of aquatic weed based vermicompost in horticulture can solve their management and disposal issues along with restoration of organic matter and nutrient depletion at low input basis.


1991 ◽  
Vol 25 (4) ◽  
pp. 580-584 ◽  
Author(s):  
�. N. Bereslavskii ◽  
L. A. Panasenko

2009 ◽  
Vol 25 (10) ◽  
pp. 1287-1303 ◽  
Author(s):  
L. De Doncker ◽  
P. Troch ◽  
R. Verhoeven ◽  
K. Bal ◽  
N. Desmet ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document