Study on the model of semi-open-end twist in compact spinning with lattice apron

2020 ◽  
pp. 004051752094254
Author(s):  
Ting Fu ◽  
Yuze Zhang ◽  
Nicholus Tayari Akankwasa ◽  
Nanliang Chen ◽  
Huiting Lin

The twist mechanism of the fiber strand in the condensing zone in compact spinning is complex. This paper proposes a dynamic model to evaluate the additional twist of the fiber strands. Based on the flow simulation in the condensing zone, the fiber trajectory in the suction slot was simulated and obtained. Several spinning parameters such as suction slot angle, suction slot width, negative pressure, and shape of suction slot, were varied to show their effects on the additional twist. The simulation results indicated that by increasing the suction slot angle from 5° to 10° the additional twist increased significantly. Higher negative pressure also leads to an increase in the additional twist. The suction slot width has a greater effect on the fiber trajectory than on the additional twist. An arc-shape suction slot increased the additional twist compared with a linear-shape one. An experimental test conducted revealed a precise agreement with the simulation results.

2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2014 ◽  
Vol 945-949 ◽  
pp. 1421-1425
Author(s):  
Xiu Qing Hao

Take typical parallel mechanism 3PTT as research subject, its inverse kinematic analysis solution was gotten. Dynamic model of the mechanism was established by Newton-Euler method, and the force and torque equations were derived. Dynamic simulation of 3PTT parallel mechanism was done by using ADAMS software, and simulation results have verified the correctness of the theoretical conclusions.


2011 ◽  
Vol 332-334 ◽  
pp. 260-263
Author(s):  
Shi Rui Liu

In the paper the structure of the compact spinning with pneumatic groove is introduced and the characteristics of three-dimensional flow field of the compact spinning with pneumatic groove are also investigated. Results from this research confirmed that In the compact zone, the air flows to the groove and enters the inner hollow of the slot-roller through the round holes, and the air on both sides of the groove condenses to the center of it and flows to the round holes; It is beneficial to compact the fiber and make the fiber slip to the bottom of the groove with shrink shape; the velocity and negative pressure are both not homogeneous, as the round holes are not continual, and the gradient of static pressure and velocity in compact zones are also perceptible.


2013 ◽  
Vol 724-725 ◽  
pp. 1736-1739
Author(s):  
Xue Jun Wang ◽  
Bin Hua ◽  
Yi Lin Chi ◽  
Xue Yu Zhao ◽  
Fu Yu Li

When ballast materials are subjected to cyclic loading, as a result, the change of particles micromechanical properties will lead to ballast degradation, permanent deformations on the railways step by step. In this paper, it presented a coupling discrete particle-flow simulation model of the railway ballast for cyclic tamping loading. Tamping frequency changes from 25HZ to 60HZ in numerical simulation process. Simulation results that the ballast compaction rate increases linearly with frequency up to a characteristic frequency 35HZ and then it declines in inverse proportion to tamping frequency. The aim of this paper is to study on the effects on the railway ballast under cyclic loading. The study shows that the discrete element method is a valid method for investigation of the microscopic properties of railway ballast now, while we have no other better research method.


2021 ◽  
Author(s):  
Mokhles Mezghani ◽  
Mustafa AlIbrahim ◽  
Majdi Baddourah

Abstract Reservoir simulation is a key tool for predicting the dynamic behavior of the reservoir and optimizing its development. Fine scale CPU demanding simulation grids are necessary to improve the accuracy of the simulation results. We propose a hybrid modeling approach to minimize the weight of the full physics model by dynamically building and updating an artificial intelligence (AI) based model. The AI model can be used to quickly mimic the full physics (FP) model. The methodology that we propose consists of starting with running the FP model, an associated AI model is systematically updated using the newly performed FP runs. Once the mismatch between the two models is below a predefined cutoff the FP model is switch off and only the AI model is used. The FP model is switched on at the end of the exercise either to confirm the AI model decision and stop the study or to reject this decision (high mismatch between FP and AI model) and upgrade the AI model. The proposed workflow was applied to a synthetic reservoir model, where the objective is to match the average reservoir pressure. For this study, to better account for reservoir heterogeneity, fine scale simulation grid (approximately 50 million cells) is necessary to improve the accuracy of the reservoir simulation results. Reservoir simulation using FP model and 1024 CPUs requires approximately 14 hours. During this history matching exercise, six parameters have been selected to be part of the optimization loop. Therefore, a Latin Hypercube Sampling (LHS) using seven FP runs is used to initiate the hybrid approach and build the first AI model. During history matching, only the AI model is used. At the convergence of the optimization loop, a final FP model run is performed either to confirm the convergence for the FP model or to re iterate the same approach starting from the LHS around the converged solution. The following AI model will be updated using all the FP simulations done in the study. This approach allows the achievement of the history matching with very acceptable quality match, however with much less computational resources and CPU time. CPU intensive, multimillion-cell simulation models are commonly utilized in reservoir development. Completing a reservoir study in acceptable timeframe is a real challenge for such a situation. The development of new concepts/techniques is a real need to successfully complete a reservoir study. The hybrid approach that we are proposing is showing very promising results to handle such a challenge.


2010 ◽  
Vol 139-141 ◽  
pp. 913-916 ◽  
Author(s):  
Guo Liang Hu ◽  
Wei Gang Chen ◽  
Zhi Gang Gao

In order to investigate the influence rules between the jet nozzle of fire water monitor and the jet performances, two typical jet nozzle, the spray jet and direct jet nozzle was designed to analysis the jet flow characteristics. Flow simulation of the jet nozzle was completed using fluent kits. The outlet velocity of the spray jet nozzle and direct jet nozzle were investigated in detail, and the influence rules of the nozzle structure on the outlet velocity was also discussed. The simulation results show that the steady velocity of the jet nozzle is about 34m/s that coinciding the contour magnitude, and the better extended length of the direct jet nozzle is about 50mm length that can improve the jet performances. The results can verify the reasonableness of the designed nozzle, it also can optimize the nozzle structure and increase the jet performance of the fire water monitor.


1999 ◽  
Author(s):  
Benjamin Edinger ◽  
Mary Frecker ◽  
John Gardner

Abstract A small piezoelectric inchworm actuator has been designed for use with a monolithic compliant end-effector in minimally invasive surgery procedures. A dynamic model of the inchworm actuator has been developed using SIMULINK. Utilizing the equations of motion for the inchworm actuator, the dynamic characteristics of the piezoelectric stack material, and the known compliance of the gripper, a force measurement model has been developed which extracts resisting force information from the piezoelectric signal. The focus of this paper is on the development of the dynamic model and the results of a simulation study that will be used to develop optimal driving signals for the inchworm actuator. Simulation results include the predicted displacement capabilities and settling time of the inchworm actuator over a range of driving frequencies.


2011 ◽  
Vol 117-119 ◽  
pp. 15-19 ◽  
Author(s):  
Cai Yun Guan ◽  
You Ming Chen ◽  
Wen Jie Qin

This paper presents the development of a dynamic model of the valve train of one engine. During the parameter determination of the model, finite element method is used to calculate the contact stiffness of the cam-follower . The simulation results of the model are compared with measured data of the valve train at same speed. Excellent quantitative agreement is found between the numerical and experimental results and the validity of the dynamic model can be verified.


Robotica ◽  
1988 ◽  
Vol 6 (1) ◽  
pp. 63-69 ◽  
Author(s):  
V. Potkonjak

SUMMARYThis paper discusses one problem of robot dynamics rarely mentioned in papers relevent to this field. It is the problem of torsional effects in torque transmissions (reducers, shafts, transmission chains, etc.). The problem is significant since oscillations can appear to be due to these effects. The complete dynamic model, which includes these effects, is derived and the possible simplifications considered. The position of feedback transducers is discussed since it appears as an important problem when it is intended to minimize the influence of these elastic vibrations. The discussion is based on eigenvalues and simulation results.


2009 ◽  
Vol 407-408 ◽  
pp. 159-162
Author(s):  
Hua Wei Chen ◽  
Ichiro Hagiwara

One novel long-travel piezoelectric-driven linear micropositioning stage capable of moving in a stepping mode is developed. The stick-slip friction effect between flexure hinge actuation tips with a sliding stage is used to drive the stage step-by-step through an enlarged displacement of piezoelectric actuator. In order to enlarge the travel range, magnifying mechanism is optimally designed by use of flexure hinge and lever beam. Moreover, dynamic model of such stage is proposed by consideration of reset integrator stick-slip model. The simulation results show that the stage has considerable good dynamic properties.


Sign in / Sign up

Export Citation Format

Share Document