scholarly journals Analyzing Safety Communication in Industrial Contexts

2021 ◽  
pp. 004728162110141
Author(s):  
Claas Digmayer ◽  
Eva-Maria Jakobs

Work in industrial contexts is confronted with various risks, which are further amplified by the trend toward Industry 4.0. Approaches are needed to examine safety communication (SC) in such changing environments. Existing studies focus on individual SC means and quantitative evaluation measures. This article proposes a qualitative approach for analyzing SC with which a process chain in a metal-working company is investigated. The results reveal that SC is implemented as a complex system of communicative means. Weaknesses in this system entail several problems at the level of both workplaces and process chains. Due to a lack of digitalization, SC does not meet the requirements of Industry 4.0. Several task areas for communication professionals are identified in optimizing SC. These include content preparation for existing SC means according to work contexts and related tasks, creating digital SC content, and increasing the companies’ resilience to novel risks.

Author(s):  
Sebastian Copei ◽  
Manuel Wickert ◽  
Albert Zündorf

Abstract The development of industry 4.0 and smart energy IT-Components relies on highly standardized communication protocols to reach vendor-independent interoperability. In innovative and fast-changing environments, the support of standard protocols increases the time to market significantly. In the energy domain, the business models and the regulatory frameworks will be updated more often than the protocols. Thus agile development and supporting standardized protocols at the same time seems to be an issue. Here we will present a new proposal for standardization and certification processes as well as an architecture for a certification platform. Both will improve the support of agile development in the industry and energy domain.


2016 ◽  
Vol 1140 ◽  
pp. 239-246 ◽  
Author(s):  
Simon Frederik Koch ◽  
Daniel Barfuss ◽  
Mathias Bobbert ◽  
Lukas Groß ◽  
Raik Grützner ◽  
...  

This publication describes new process chain approaches for the manufacturing of intrinsic hybrid composites for lightweight structures. The introduced process chains show a variety of different part and sample types, like insert technology for fastening of hollow hybrid shafts and profiles. Another field of research are hybrid laminates with different layers of carbon fiber reinforced plastics stacked with aluminum or steel sheets. The derived process chains base on automated fiber placement, resin transfer molding, deep drawing, rotational molding and integral tube blow molding.


2016 ◽  
Vol 1140 ◽  
pp. 328-334
Author(s):  
Matthias Behr ◽  
Carsten Schmidt

A planning method is presented which allows to systematically building process chains based on a preliminary design of composite structures. The method utilises the specific sequences of procedural steps that occur in the production of carbon fibre reinforced plastic (CFRP) structures, to build sub process chains for each component of the structure. Process restrictions are considered to evaluate the suitability of different production processes. To obtain the whole process chain of the structure, different joining methods are applied in addition to combine the components and its sub process chains. The results of the presented method are used in an overarching development procedure to investigate resulting impacts on the solution. Possible impacts could be the production costs or the material characteristics.


2020 ◽  
pp. 575-599
Author(s):  
Vladimír Bureš

Systems engineering focuses on design, development, and implementation of complex systems. Not only does the Industry 4.0 concept consist of various technical components that need to be properly set and interconnected, but it is also tied to various managerial aspects. Thus, systems engineering approach can be used for its successful deployment. Overemphasis of technological aspects of Industry 4.0 represents the main starting point of this chapter. Then, collocation analysis, word clusters identification, selection and exemplification of selected domain in the business management realm, and frequency analysis are used in order to develop a holistic framework of Industry 4.0. This framework comprises six levels – physical, activity, outcome, content, triggers, and context. Moreover, the information and control level is integrated. The new holistic framework helps to consider Industry 4.0 from the complex systems engineering perspective – design and deployment of a complex system with required parameters and functionality.


Author(s):  
M.-A. Dittrich ◽  
S. Fohlmeister

AbstractDue to growing globalized markets and the resulting globalization of production networks across different companies, inventory and order optimization is becoming increasingly important in the context of process chains. Thus, an adaptive and continuously self-optimizing inventory control on a global level is necessary to overcome the resulting challenges. Advances in sensor and communication technology allow companies to realize a global data exchange to achieve a holistic inventory control. Based on deep q-learning, a method for a self-optimizing inventory control is developed. Here, the decision process is based on an artificial neural network. Its input is modeled as a state vector that describes the current stocks and orders within the process chain. The output represents a control vector that controls orders for each individual station. Furthermore, a reward function, which is based on the resulting storage and late order costs, is implemented for simulations-based decision optimization. One of the main challenges of implementing deep q-learning is the hyperparameter optimization for the training process, which is investigated in this paper. The results show a significant sensitivity for the leaning rate α and the exploration rate ε. Based on optimized hyperparameters, the potential of the developed methodology could be shown by significantly reducing the total costs compared to the initial state and by achieving stable control behavior for a process chain containing up to 10 stations.


2011 ◽  
Vol 473 ◽  
pp. 816-823 ◽  
Author(s):  
Reimund Neugebauer ◽  
Frank Schieck ◽  
Angela Göschel ◽  
Julia Schönherr

Energy and resource efficiency is a pressing issue for technological markets in the 21st century. In the field of production technology the development of energy and resource efficient processes and process chains is of particular importance. In order to meet these needs sustainable methods and standards have to be developed. This paper presents a new procedure to calculate and evaluate the energy and resource efficiency of process chains. The method consists of 4 stages that proceed from the real world to the quantitative calculation and qualitative evaluation of material and energy flows. The method is explained and validated using press hardening process chains as an example. The procedure enables the user to systematically capture and structure the press hardening process chain and subsequently develop a comprehensive model of the whole process chain. As a result, it allows to calculate the energy requirements for each stage of the process chain, and later on the process chain as a whole. The intention of the developed procedure is to provide a tool to detect the most energy efficient variant from a range of possible process chains.


2013 ◽  
Vol 834-836 ◽  
pp. 1927-1931
Author(s):  
Jaya Suteja The ◽  
Prasad K.D.V. Yarlagadda ◽  
M. Azharul Karim ◽  
Cheng Yan

Designers need to consider both the functional and production process requirements at the early stage of product development. A variety of the research works found in the literature has been proposed to assist designers in selecting the most viable manufacturing process chain. However, they do not provide any assistance for designers to evaluate the processes according to the particular circumstances of their company. This paper describes a framework of an Activity and Resource Advisory System (ARAS) that generates advice about the required activities and the possible resources for various manufacturing process chains. The system provides more insight, more flexibility, and a more holistic and suited approach for designers to evaluate and then select the most viable manufacturing process chain at the early stage of product development.


Author(s):  
R Knitter ◽  
W Bauer ◽  
D Göhring

Most shaping processes for ceramics are based on a powder technological moulding process using a negative mould and subsequent thermal compaction. Especially for prototypes and small-lot series of microcomponents, the outlay for moulds is the major costing factor. Therefore the use of rapid prototyping (RP) processes can decisively reduce the costs and time in product development of ceramic microcomponents. By combining the high resolution of, for example, stereolithography as an inexpensive and fast supply for master models with the high flexibility of low-pressure injection moulding, a rapid prototyping process chain (RPPC) has been established for the fabrication of micropatterned ceramic components as functional models or pre-production lots. This RPPC proved to have a very high moulding precision and accuracy in the submillimetre range, but also enables the fabrication of components with outer dimensions of several centimetres. Different RP techniques were investigated with regard to their suitability to be used as master models in the replication chain. The quality of the master models turned out to be of decisive significance for the quality and reproducibility of the ceramic mouldings.


2011 ◽  
Vol 104 ◽  
pp. 103-113 ◽  
Author(s):  
Michael Haydn ◽  
Thomas Hauer ◽  
Eberhard Abele

Uncertainty during production processes has an important influence on the product quality as well as production costs. For multilevel process chains with serially connected processes, additional uncertainty can be caused by the previous step. The manufacturing of precision holes by drilling and reaming is an important multilevel process chain. The interactions between machine, tool and pre-drilled hole cause process errors during the quality determinant final reaming process. In this paper, a systematic approach for the identification and control of uncertainty during the reaming process is presented. Thus, the influence of key aspects like skewness of pre-drilled hole or the influences of material strength gradients are analyzed. Further, simulation models for the consideration of these uncertainties are presented.


2012 ◽  
Vol 504-506 ◽  
pp. 631-636 ◽  
Author(s):  
Daniela Steffes-Lai ◽  
Tanja Clees

This paper presents a new approach for statistical analysis of process chains, including a parameter sensitivity analysis of each process step as a basis for dimension reduction, and an efficient interpolatory metamodel in order to predict new designs. A Monte Carlo alike evaluation of this metamodel results in the requested statistical information, e.g. quantiles of the output functionals. Numerical results are presented for the forming process of a ZStE340 metal blank of a B-pillar. Additionally, a brief overview of results of the process chain forming to crash is given.


Sign in / Sign up

Export Citation Format

Share Document