Incorporating In Vitro Information on Drug Metabolism Into Clinical Trial Simulations to Assess the Effect of CYP2D6 Polymorphism on Pharmacokinetics and Pharmacodynamics: Dextromethorphan as a Model Application

2007 ◽  
Vol 47 (2) ◽  
pp. 175-186 ◽  
Author(s):  
Gemma L. Dickinson ◽  
Saeed Rezaee ◽  
Nicholas J. Proctor ◽  
Martin S. Lennard ◽  
Geoffrey T. Tucker ◽  
...  
Author(s):  
Sean M. Davidson ◽  
Kishal Lukhna ◽  
Diana A. Gorog ◽  
Alan D. Salama ◽  
Alejandro Rosell Castillo ◽  
...  

Abstract Purpose Coronavirus disease 19 (COVID-19) has, to date, been diagnosed in over 130 million persons worldwide and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several variants of concern have emerged including those in the United Kingdom, South Africa, and Brazil. SARS-CoV-2 can cause a dysregulated inflammatory response known as a cytokine storm, which can progress rapidly to acute respiratory distress syndrome (ARDS), multi-organ failure, and death. Suppressing these cytokine elevations may be key to improving outcomes. Remote ischemic conditioning (RIC) is a simple, non-invasive procedure whereby a blood pressure cuff is inflated and deflated on the upper arm for several cycles. “RIC in COVID-19” is a pilot, multi-center, randomized clinical trial, designed to ascertain whether RIC suppresses inflammatory cytokine production. Methods A minimum of 55 adult patients with diagnosed COVID-19, but not of critical status, will be enrolled from centers in the United Kingdom, Brazil, and South Africa. RIC will be administered daily for up to 15 days. The primary outcome is the level of inflammatory cytokines that are involved in the cytokine storm that can occur following SARS-CoV-2 infection. The secondary endpoint is the time between admission and until intensive care admission or death. The in vitro cytotoxicity of patient blood will also be assessed using primary human cardiac endothelial cells. Conclusions The results of this pilot study will provide initial evidence on the ability of RIC to suppress the production of inflammatory cytokines in the setting of COVID-19. Trial Registration NCT04699227, registered January 7th, 2021.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Iwein Gyselinck ◽  
◽  
Laurens Liesenborghs ◽  
Ewout Landeloos ◽  
Ann Belmans ◽  
...  

Abstract Background The rapid emergence and the high disease burden of the novel coronavirus SARS-CoV-2 have created a medical need for readily available drugs that can decrease viral replication or blunt the hyperinflammatory state leading to severe COVID-19 disease. Azithromycin is a macrolide antibiotic, known for its immunomodulatory properties. It has shown antiviral effect specifically against SARS-CoV-2 in vitro and acts on cytokine signaling pathways that have been implicated in COVID-19. Methods DAWn-AZITHRO is a randomized, open-label, phase 2 proof-of-concept, multicenter clinical trial, evaluating the safety and efficacy of azithromycin for treating hospitalized patients with COVID-19. It is part of a series of trials testing promising interventions for COVID-19, running in parallel and grouped under the name DAWn-studies. Patients hospitalized on dedicated COVID wards are eligible for study inclusion when they are symptomatic (i.e., clinical or radiological signs) and have been diagnosed with COVID-19 within the last 72 h through PCR (nasopharyngeal swab or bronchoalveolar lavage) or chest CT scan showing typical features of COVID-19 and without alternate diagnosis. Patients are block-randomized (9 patients) with a 2:1 allocation to receive azithromycin plus standard of care versus standard of care alone. Standard of care is mostly supportive, but may comprise hydroxychloroquine, up to the treating physician’s discretion and depending on local policy and national health regulations. The treatment group receives azithromycin qd 500 mg during the first 5 consecutive days after inclusion. The trial will include 284 patients and recruits from 15 centers across Belgium. The primary outcome is time from admission (day 0) to life discharge or to sustained clinical improvement, defined as an improvement of two points on the WHO 7-category ordinal scale sustained for at least 3 days. Discussion The trial investigates the urgent and still unmet global need for drugs that may impact the disease course of COVID-19. It will either provide support or else justify the discouragement of the current widespread, uncontrolled use of azithromycin in patients with COVID-19. The analogous design of other parallel trials of the DAWN consortium will amplify the chance of identifying successful treatment strategies and allow comparison of treatment effects within an identical clinical context. Trial registration EU Clinical trials register EudraCT Nb 2020-001614-38. Registered on 22 April 2020


2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Tamara Merz ◽  
Nicole Denoix ◽  
Martin Wepler ◽  
Holger Gäßler ◽  
David A. C. Messerer ◽  
...  

AbstractThis review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.


Author(s):  
Lawrence Howell ◽  
Rosalind E. Jenkins ◽  
Stephen Lynch ◽  
Carrie Duckworth ◽  
B. Kevin Park ◽  
...  

AbstractHepatic organoids are a recent innovation in in vitro modeling. Initial studies suggest that organoids better recapitulate the liver phenotype in vitro compared to pre-existing proliferative cell models. However, their potential for drug metabolism and detoxification remains poorly characterized, and their global proteome has yet to be compared to their tissue of origin. This analysis is urgently needed to determine what gain-of-function this new model may represent for modeling the physiological and toxicological response of the liver to xenobiotics. Global proteomic profiling of undifferentiated and differentiated hepatic murine organoids and donor-matched livers was, therefore, performed to assess both their similarity to liver tissue, and the expression of drug-metabolizing enzymes and transporters. This analysis quantified 4405 proteins across all sample types. Data are available via ProteomeXchange (PXD017986). Differentiation of organoids significantly increased the expression of multiple cytochrome P450, phase II enzymes, liver biomarkers and hepatic transporters. While the final phenotype of differentiated organoids is distinct from liver tissue, the organoids contain multiple drug metabolizing and transporter proteins necessary for liver function and drug metabolism, such as cytochrome P450 3A, glutathione-S-transferase alpha and multidrug resistance protein 1A. Indeed, the differentiated organoids were shown to exhibit increased sensitivity to midazolam (10–1000 µM) and irinotecan (1–100 µM), when compared to the undifferentiated organoids. The predicted reduced activity of HNF4A and a resulting dysregulation of RNA polymerase II may explain the partial differentiation of the organoids. Although further experimentation, optimization and characterization is needed relative to pre-existing models to fully contextualize their use as an in vitro model of drug-induced liver injury, hepatic organoids represent an attractive novel model of the response of the liver to xenobiotics. The current study also highlights the utility of global proteomic analyses for rapid and accurate evaluation of organoid-based test systems.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1429
Author(s):  
Theo Wallimann ◽  
Caroline H. T. Hall ◽  
Sean P. Colgan ◽  
Louise E. Glover

Based on theoretical considerations, experimental data with cells in vitro, animal studies in vivo, as well as a single case pilot study with one colitis patient, a consolidated hypothesis can be put forward, stating that “oral supplementation with creatine monohydrate (Cr), a pleiotropic cellular energy precursor, is likely to be effective in inducing a favorable response and/or remission in patients with inflammatory bowel diseases (IBD), like ulcerative colitis and/or Crohn’s disease”. A current pilot clinical trial that incorporates the use of oral Cr at a dose of 2 × 7 g per day, over an initial period of 2 months in conjunction with ongoing therapies (NCT02463305) will be informative for the proposed larger, more long-term Cr supplementation study of 2 × 3–5 g of Cr per day for a time of 3–6 months. This strategy should be insightful to the potential for Cr in reducing or alleviating the symptoms of IBD. Supplementation with chemically pure Cr, a natural nutritional supplement, is well tolerated not only by healthy subjects, but also by patients with diverse neuromuscular diseases. If the outcome of such a clinical pilot study with Cr as monotherapy or in conjunction with metformin were positive, oral Cr supplementation could then be used in the future as potentially useful adjuvant therapeutic intervention for patients with IBD, preferably together with standard medication used for treating patients with chronic ulcerative colitis and/or Crohn’s disease.


1993 ◽  
Vol 13 (2_suppl) ◽  
pp. 367-371 ◽  
Author(s):  
Erich Keller

Staphylococci are the leading pathogens In continuous ambulatory peritoneal dialysis (CAPD)-related peritonitis. Vancomycin appears to be an outstanding antistaphylococcal drug because resistance to It Is nearly absent. The pharmacokinetics of vancomycin and clinical cure rates of peritonitis with different dosing guidelines have been studied extensively. Different dosing guidelines with IP or IV loading doses followed or not followed by IP maintenance doses are used successfully, despite the fact that some of the dosing schemes produce apparently suboptimal drug levels referring to In vitro data like the MIC value (minimum Inhibitory concentration). Alternatively, amlnoglycosldes, cephalosporlns, Isoxazolyl penicillins, and broad-spectrum penicillins combined with betalactamase Inhibitors may be used for the treatment of gram-positive peritonitis. For the above panicillins pharmacokinetic data are scarce, and clinical experience is limited. Rifampin has excellent Intracellular antistaphylococcal activity and should be used In combination with other antibiotics. Although pharmacokinetic data are lacking, rifampin dosages do not require adaptation to renal function or replacement therapy.


2017 ◽  
Vol 45 (7) ◽  
pp. 748-754 ◽  
Author(s):  
Wenqi Lu ◽  
Eva Rettenmeier ◽  
Miles Paszek ◽  
Mei-Fei Yueh ◽  
Robert H. Tukey ◽  
...  

2012 ◽  
Vol 83 (4) ◽  
pp. 551-558 ◽  
Author(s):  
Gianluca Catucci ◽  
Gianfranco Gilardi ◽  
Lars Jeuken ◽  
Sheila J. Sadeghi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document