Disrupted Effective Connectivity Between the Medial Frontal Cortex and the Caudate in Adolescent Boys With Externalizing Behavior Disorders

2009 ◽  
Vol 36 (11) ◽  
pp. 1141-1157 ◽  
Author(s):  
Katherine E. Shannon ◽  
Colin Sauder ◽  
Theodore P. Beauchaine ◽  
Lisa M. Gatzke-Kopp

Studies addressing the neural correlates of criminal behavior have focused primarily on the prefrontal cortex and the amygdala. However, few studies have examined dopaminergic inputs to these or other brain regions, despite the fact that central dopamine (DA) dysfunction is associated with both trait impulsivity and novelty seeking. Given long-standing associations between both of these personality traits and externalizing psychopathology, the authors examined effective connectivity between the caudate nucleus and the anterior cingulate cortex, two areas that rely on DA input to facilitate associative learning and goal directed behavior. Dysfunction in top-down and bottom-up processing within this dopaminergically mediated frontostriatal circuit may be an important biological vulnerability that increases one’s likelihood of engaging in delinquent and criminal behavior. When compared with controls, reduced effective connectivity between these regions among adolescents with externalizing psychopathology was found, suggesting deficiencies in frontostriatal circuitry.

2013 ◽  
Vol 25 (5) ◽  
pp. 730-742 ◽  
Author(s):  
Sebastian Puschmann ◽  
Riklef Weerda ◽  
Georg Klump ◽  
Christiane M. Thiel

Psychophysical experiments show that auditory change detection can be disturbed in situations in which listeners have to monitor complex auditory input. We made use of this change deafness effect to segregate the neural correlates of physical change in auditory input from brain responses related to conscious change perception in an fMRI experiment. Participants listened to two successively presented complex auditory scenes, which consisted of six auditory streams, and had to decide whether scenes were identical or whether the frequency of one stream was changed between presentations. Our results show that physical changes in auditory input, independent of successful change detection, are represented at the level of auditory cortex. Activations related to conscious change perception, independent of physical change, were found in the insula and the ACC. Moreover, our data provide evidence for significant effective connectivity between auditory cortex and the insula in the case of correctly detected auditory changes, but not for missed changes. This underlines the importance of the insula/anterior cingulate network for conscious change detection.


2015 ◽  
Vol 9s1 ◽  
pp. JEN.S32736
Author(s):  
Susanne J. Asscheman ◽  
Katharine N. Thakkar ◽  
Sebastiaan F.W. Neggers

Executive control is the ability to flexibly control behavior and is frequently studied with saccadic eye movements. Contrary to frontal oculomotor areas, the role of the superior parietal lobe (SPL) in the executive control of saccades remains unknown. To explore the role of SPL networks in saccade control, we performed a saccadic search-step task while acquiring functional magnetic resonance imaging data for 41 participants. Psychophysiological interaction analyses assessed task-related differences in the effective connectivity of SPL with other brain regions during the inhibition and redirection of saccades. Results indicate an increased coupling of SPL with frontal, posterior, and striatal oculomotor areas for redirected saccades versus visually guided saccades. Saccade inhibition versus unsuccessful inhibition revealed an increased coupling of SPL with dorsolateral prefrontal cortex and anterior cingulate cortex. We discuss how these findings relate to ongoing debates about the implementation of executive control and conclude that early attentional control and rapid updating of saccade goals are important signals for executive control.


2021 ◽  
Vol 10 (18) ◽  
pp. 4126
Author(s):  
Joachim Kowalski ◽  
Adrianna Aleksandrowicz ◽  
Małgorzata Dąbkowska ◽  
Łukasz Gawęda

Cognitive biases are an important factor contributing to the development and symptom severity of psychosis. Despite the fact that various cognitive biases are contributing to psychosis, they are rarely investigated together. In the current systematic review, we aimed at investigating specific and shared functional neural correlates of two important cognitive biases: aberrant salience and source monitoring. We conducted a systematic search of fMRI studies of said cognitive biases. Eight studies on aberrant salience and eleven studies on source monitoring were included in the review. We critically discussed behavioural and neuroimaging findings concerning cognitive biases. Various brain regions are associated with aberrant salience and source monitoring in individuals with schizophrenia and the risk of psychosis. The ventral striatum and insula contribute to aberrant salience. The medial prefrontal cortex, superior and middle temporal gyrus contribute to source monitoring. The anterior cingulate cortex and hippocampus contribute to both cognitive biases, constituting a neural overlap. Our review indicates that aberrant salience and source monitoring may share neural mechanisms, suggesting their joint role in producing disrupted external attributions of perceptual and cognitive experiences, thus elucidating their role in positive symptoms of psychosis. Account bridging mechanisms of these two biases is discussed. Further studies are warranted.


2016 ◽  
Vol 35 (1-2) ◽  
pp. 341-363
Author(s):  
Nicholas Brown ◽  
Jessica A. Wojtalik ◽  
Melissa Turkel ◽  
Tessa Vuper ◽  
David Strasshofer ◽  
...  

Previous research suggests a diathesis-stress model of posttraumatic stress disorder (PTSD), wherein individuals with high levels of neuroticism who are exposed to traumatic events subsequently develop PTSD. Although studies have established relationships between neuroticism and neurological functioning in various brain regions for healthy and depressed individuals, the specific neural correlates of neuroticism for individuals with PTSD are yet unknown. This relationship is particularly relevant for women, given that their increased risk for PTSD is partially accounted for by their higher baseline levels of neuroticism. The current study examined previously established neural correlates of neuroticism in 61 women (48 women with interpersonal violence [IPV]/PTSD and 13 healthy controls). A specific region of interest map, including the amygdala, hippocampus, parahippocampus, anterior cingulate cortex (ACC), and dorsal medial prefrontal cortex (dmPFC), was examined while participants completed an emotional conflict task. Results showed that the PTSD group had significantly higher neuroticism scores than the healthy control group ( t = 6.90, p < .001). Higher neuroticism scores were associated with increased neural activity in the right dmPFC when participants were instructed to directly attend to faces with negative emotional valences. Significant trends between higher neuroticism scores and greater right amygdala and right ACC activation also emerged for this condition. Finally, neuroticism was found to be associated with right amygdala and right parahippocampal activity when participants were instructed to ignore faces with negative emotional valences. The results of this study lend further evidence to the proposed diathesis-stress model of neuroticism and PTSD. Moreover, findings suggest a significant association between neuroticism and neural activity in brain regions associated with fear and emotion regulation for women with IPV and subsequent PTSD.


Author(s):  
Joachim Kowalski ◽  
Adrianna Aleksandrowicz ◽  
Małgorzata Dąbkowska ◽  
Łukasz Gawęda

Cognitive biases are an important factor contributing to the development and symptom severity of psychosis. Despite that various cognitive biases are contributing to psychosis, they are rarely investigated together. In the current systematic review, we aimed at investigating specific and shared neural correlates of two important cognitive biases: aberrant salience and source monitoring. We conducted a systematic search of fMRI studies of said cognitive biases. Eight studies on aberrant salience and eleven studies on source monitoring were included in the review. We critically discussed behavioural and neuroimaging findings concerning cognitive biases. Various brain regions are associated with aberrant salience and source monitoring in individuals with schizophrenia and the risk of psychosis. Ventral striatum and insula contribute to aberrant salience. The medial prefrontal cortex, superior and middle temporal gyrus contribute to source monitoring. The anterior cingulate cortex and hippocampus contribute to both cognitive biases, constituting a neural overlap. Our review indicates that aberrant salience and source monitoring may share neural mechanisms, suggesting their joint role in producing disrupted external attributions of perceptual and cognitive experiences, thus elucidating their role in positive symptoms of psychosis. Account bridging mechanisms of these two biases is discussed. Further studies are warranted.


2009 ◽  
Vol 40 (1) ◽  
pp. 117-124 ◽  
Author(s):  
E. Paulesu ◽  
E. Sambugaro ◽  
T. Torti ◽  
L. Danelli ◽  
F. Ferri ◽  
...  

BackgroundWorry is considered a key feature of generalized anxiety disorder (GAD), whose neural correlates are poorly understood. It is not known whether the brain regions involved in pathological worry are similar to those involved in worry-like mental activity in normal subjects or whether brain areas associated with worry are the same for different triggers such as verbal stimuli or faces. This study was designed to clarify these issues.MethodEight subjects with GAD and 12 normal controls underwent functional magnetic resonance imaging (fMRI) mood induction paradigms based on spoken sentences or faces. Sentences were either neutral or designed to induce worry. Faces conveyed a sad or a neutral mood and subjects were instructed to empathize with those moods.ResultsWe found that the anterior cingulate and dorsal medial prefrontal cortex [Brodmann area (BA) 32/23 and BA 10/11] were associated with worry triggered by sentences in both subjects with GAD and normal controls. However, GAD subjects showed a persistent activation of these areas even during resting state scans that followed the worrying phase, activation that correlated with scores on the Penn State Worry Questionnaire (PSWQ). This region was activated during the empathy experiment for sad faces.ConclusionsThe results show that worry in normal subjects and in subjects with GAD is based on activation of the medial prefrontal and anterior cingulate regions, known to be involved in mentalization and introspective thinking. A dysregulation of the activity of this region and its circuitry may underpin the inability of GAD patients to stop worrying.


2019 ◽  
Author(s):  
Alexander Weigard ◽  
Mary Soules ◽  
Bailey Ferris ◽  
Robert A. Zucker ◽  
Chandra Sripada ◽  
...  

AbstractBackgroundIndividuals with ADHD and other forms of externalizing psychopathology tend to display poor behavioral performance on the go/no-go task, which is thought to reflect deficits in inhibitory control. However, clinical neuroimaging studies using this paradigm have yielded conflicting results, raising basic questions about what the task measures and which aspects of the task relate to clinical outcomes of interest. We aimed to provide a clearer understanding of how neural activations from this paradigm relate to the cognitive mechanisms that underlie performance and the implications of these relationships for clinical research.Methods143 emerging adults (ages 18-21) performed the go/no-go task during fMRI scanning. We used the diffusion decision model (DDM), a mathematical modeling approach, to quantify distinct neurocognitive processes that underlie go/no-go performance. We then correlated DDM parameters with brain activation across several standard go/no-go contrasts and assessed relationships of DDM parameters and associated neural measures with clinical ratings.ResultsFronto-parietal activations on correct inhibition trials, which have typically been assumed to isolate neural processes involved in inhibition, were unrelated to either individuals’ response biases or their efficiency of task performance. In contrast, responses to false alarms in brain regions putatively responsible for error monitoring were strongly related to more efficient performance on the task and correlated with externalizing behavior and ADHD symptoms.ConclusionsOur findings cast doubt on conventional interpretations of go/no-go task-related activations as reflecting inhibition functioning. We instead find that error-related contrasts provide clinically-relevant information about neural systems involved in monitoring and optimizing cognitive performance.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3533 ◽  
Author(s):  
Jingguang Li ◽  
Xiang-Zhen Kong

Background Impulsivity is one crucial personality trait associated with various maladaptive behavior and many mental disorders. In the study reported here, we investigated the relationship between impulsivity and morphological connectivity (MC) between human brain regions, a newly proposed measure for brain coordination through the development and learning. Method Twenty-four participants’ T1-weighted magnetic resonance imaging (MRI) images and their self-reported impulsivity scores, measured by the Barratt impulsiveness scale (BIS), were retrieved from the OpenfMRI project. First, we assessed the MC by quantifying the similarity of probability density function of local morphological features between the anterior cingulate cortex (ACC), one of the most crucial hubs in the neural network modulating cognitive control, and other association cortices in each participant. Then, we correlated the MC to impulsivity scores across participants. Results The BIS total score was found to correlate with the MCs between the ACC and two other brain regions in the right hemisphere: the inferior frontal gyrus (IFG), a well-established structure for inhibition control; the inferior temporal gyrus (ITG), which has been previously shown to be associated with hyperactive/impulsivity symptoms. Furthermore, the ACC-IFG MC was mainly correlated with motor impulsivity, and the ACC-ITG MC was mainly correlated with attentional impulsivity. Discussion Together, these findings provide evidence that the ACC, IFG, and ITG in the right hemisphere are involved neural networks modulating impulsivity. Also, the current findings highlight the utility of MC analyses in facilitating our understanding of neural correlates of behavioral and personality traits.


2021 ◽  
Author(s):  
Przemysław Adamczyk ◽  
Martin Jáni ◽  
Tomasz S. Ligeza ◽  
Olga Płonka ◽  
Piotr Błądziński ◽  
...  

AbstractFigurative language processing (e.g. metaphors) is commonly impaired in schizophrenia. In the present study, we investigated the neural activity and propagation of information within neural circuits related to the figurative speech, as a neural substrate of impaired conventional metaphor processing in schizophrenia. The study included 30 schizophrenia outpatients and 30 healthy controls, all of whom were assessed with a functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG) punchline-based metaphor comprehension task including literal (neutral), figurative (metaphorical) and nonsense (absurd) endings. The blood oxygenation level-dependent signal was recorded with 3T MRI scanner and direction and strength of cortical information flow in the time course of task processing was estimated with a 64-channel EEG input for directed transfer function. The presented results revealed that the behavioral manifestation of impaired figurative language in schizophrenia is related to the hypofunction in the bilateral fronto-temporo-parietal brain regions (fMRI) and various differences in effective connectivity in the fronto-temporo-parietal circuit (EEG). Schizophrenia outpatients showed an abnormal pattern of connectivity during metaphor processing which was related to bilateral (but more pronounced at the left hemisphere) hypoactivation of the brain. Moreover, we found reversed lateralization patterns, i.e. a rightward-shifted pattern during metaphor processing in schizophrenia compared to the control group. In conclusion, the presented findings revealed that the impairment of the conventional metaphor processing in schizophrenia is related to the bilateral brain hypofunction, which supports the evidence on reversed lateralization of the language neural network and the existence of compensatory recruitment of alternative neural circuits in schizophrenia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Tsuji ◽  
Fumiya Arikuni ◽  
Takafumi Sasaoka ◽  
Shin Suyama ◽  
Takashi Akiyoshi ◽  
...  

AbstractBrain activity associated with pain perception has been revealed by numerous PET and fMRI studies over the past few decades. These findings helped to establish the concept of the pain matrix, which is the distributed brain networks that demonstrate pain-specific cortical activities. We previously found that peripheral arterial stiffness $${\beta }_{\text{art}}$$ β art responds to pain intensity, which is estimated from electrocardiography, continuous sphygmomanometer, and photo-plethysmography. However, it remains unclear whether and to what extent $${\beta }_{\text{art}}$$ β art aligns with pain matrix brain activity. In this fMRI study, 22 participants received different intensities of pain stimuli. We identified brain regions in which the blood oxygen level-dependent signal covaried with $${\beta }_{\text{art}}$$ β art using parametric modulation analysis. Among the identified brain regions, the lateral and medial prefrontal cortex and ventral and dorsal anterior cingulate cortex were consistent with the pain matrix. We found moderate correlations between the average activities in these regions and $${\beta }_{\text{art}}$$ β art (r = 0.47, p < 0.001). $${\beta }_{\text{art}}$$ β art was also significantly correlated with self-reported pain intensity (r = 0.44, p < 0.001) and applied pain intensity (r = 0.43, p < 0.001). Our results indicate that $${\beta }_{\text{art}}$$ β art is positively correlated with pain-related brain activity and subjective pain intensity. This study may thus represent a basis for adopting peripheral arterial stiffness as an objective pain evaluation metric.


Sign in / Sign up

Export Citation Format

Share Document