Stacked sparse autoencoders that preserve the local and global feature structures for fault detection

Author(s):  
Jie Yin ◽  
Xuefeng Yan

Although the model based on an autoencoder (AE) exhibits strong feature extraction capability without data labeling, such model is less likely to consider the structural distribution of the original data and the extracted feature is uninterpretable. In this study, a new stacked sparse AE (SSAE) based on the preservation of local and global feature structures is proposed for fault detection. Two additional loss terms are included in the loss function of SSAE to retain the local and global structures of the original data. The preservation of the local feature considers the nearest neighbor of data in space, while that of the global feature considers the variance information of data. The final feature is not only a deep representation of data, but it also retains structural information as much as possible. The proposed model demonstrates remarkable detection performance in case studies of a numerical process and the Tennessee Eastman process.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shen Yin ◽  
Xin Gao ◽  
Hamid Reza Karimi ◽  
Xiangping Zhu

This paper investigates the proficiency of support vector machine (SVM) using datasets generated by Tennessee Eastman process simulation for fault detection. Due to its excellent performance in generalization, the classification performance of SVM is satisfactory. SVM algorithm combined with kernel function has the nonlinear attribute and can better handle the case where samples and attributes are massive. In addition, with forehand optimizing the parameters using the cross-validation technique, SVM can produce high accuracy in fault detection. Therefore, there is no need to deal with original data or refer to other algorithms, making the classification problem simple to handle. In order to further illustrate the efficiency, an industrial benchmark of Tennessee Eastman (TE) process is utilized with the SVM algorithm and PLS algorithm, respectively. By comparing the indices of detection performance, the SVM technique shows superior fault detection ability to the PLS algorithm.


2012 ◽  
Vol 591-593 ◽  
pp. 2108-2113 ◽  
Author(s):  
Zhang Ming He ◽  
Hai Yin Zhou ◽  
Jiong Qi Wang ◽  
Yuan Yuan Jiao

Detection and diagnosis of unanticipated fault has inevitably become a critical issue for PHM (Prognostics and Health Management), especially in the fields of robot, spacecraft and industrial system. It is difficult to overcome this problem since there is lack of history information, prior knowledge and dealing strategy for unanticipated fault. In this paper, a general processing model for unanticipated fault detection and diagnosis is constructed, then, a detection method, named OCPCA (One-class Principal Component Analysis), is proposed. Every OCPCA detector is trained by data from single pattern, and the testing task is to determine whether the testing data is from the very pattern. If the unanticipated fault data is rejected by all OCPCA detectors, then the detection task is accomplished. TEP (Tennessee-Eastman Process), a widely used simulated system based on an actual industrial process, is used to verify the detection of unanticipated fault. The results demonstrate the validity of the proposed model and method.


2021 ◽  
Vol 11 (14) ◽  
pp. 6590
Author(s):  
Krittakom Srijiranon ◽  
Narissara Eiamkanitchat

Air pollution is a major global issue. In Thailand, this issue continues to increase every year, similar to other countries, especially during the dry season in the northern region. In this period, particulate matter with aerodynamic diameters smaller than 10 and 2.5 micrometers, known as PM10 and PM2.5, are important pollutants, most of which exceed the national standard levels, the so-called Thailand air quality index (T-AQI). Therefore, this study created a prediction model to classify T-AQI calculated from both types of PM. The neuro-fuzzy model with a minimum entropy principle model is proposed to transform the original data into new informative features. The processes in this model are able to discover appropriate separation points of the trapezoidal membership function by applying the minimum entropy principle. The membership value of the fuzzy section is then passed to the neural section to create a new data feature, the PM level, for each hour of the day. Finally, as an analytical process to obtain new knowledge, predictive models are created using new data features for better classification results. Various experiments were utilized to find an appropriate structure with high prediction accuracy. The results of the proposed model were favorable for predicting both types of PM up to three hours in advance. The proposed model can help people who are planning short-term outdoor activities.


Author(s):  
Irfan Ullah Khan ◽  
Nida Aslam ◽  
Malak Aljabri ◽  
Sumayh S. Aljameel ◽  
Mariam Moataz Aly Kamaleldin ◽  
...  

The COVID-19 outbreak is currently one of the biggest challenges facing countries around the world. Millions of people have lost their lives due to COVID-19. Therefore, the accurate early detection and identification of severe COVID-19 cases can reduce the mortality rate and the likelihood of further complications. Machine Learning (ML) and Deep Learning (DL) models have been shown to be effective in the detection and diagnosis of several diseases, including COVID-19. This study used ML algorithms, such as Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbor (KNN) and DL model (containing six layers with ReLU and output layer with sigmoid activation), to predict the mortality rate in COVID-19 cases. Models were trained using confirmed COVID-19 patients from 146 countries. Comparative analysis was performed among ML and DL models using a reduced feature set. The best results were achieved using the proposed DL model, with an accuracy of 0.97. Experimental results reveal the significance of the proposed model over the baseline study in the literature with the reduced feature set.


2021 ◽  
Vol 11 (5) ◽  
pp. 2166
Author(s):  
Van Bui ◽  
Tung Lam Pham ◽  
Huy Nguyen ◽  
Yeong Min Jang

In the last decade, predictive maintenance has attracted a lot of attention in industrial factories because of its wide use of the Internet of Things and artificial intelligence algorithms for data management. However, in the early phases where the abnormal and faulty machines rarely appeared in factories, there were limited sets of machine fault samples. With limited fault samples, it is difficult to perform a training process for fault classification due to the imbalance of input data. Therefore, data augmentation was required to increase the accuracy of the learning model. However, there were limited methods to generate and evaluate the data applied for data analysis. In this paper, we introduce a method of using the generative adversarial network as the fault signal augmentation method to enrich the dataset. The enhanced data set could increase the accuracy of the machine fault detection model in the training process. We also performed fault detection using a variety of preprocessing approaches and classified the models to evaluate the similarities between the generated data and authentic data. The generated fault data has high similarity with the original data and it significantly improves the accuracy of the model. The accuracy of fault machine detection reaches 99.41% with 20% original fault machine data set and 93.1% with 0% original fault machine data set (only use generate data only). Based on this, we concluded that the generated data could be used to mix with original data and improve the model performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Dandan Yang

This paper investigates the three-way clustering involving fuzzy covering, thresholds acquisition, and boundary region processing. First of all, a valid fuzzy covering of the universe is constructed on the basis of an appropriate fuzzy similarity relation, which helps capture the structural information and the internal connections of the dataset from the global perspective. Due to the advantages of valid fuzzy covering, we explore the valid fuzzy covering instead of the raw dataset for RFCM algorithm-based three-way clustering. Subsequently, from the perspective of semantic interpretation of balancing the uncertainty changes in fuzzy sets, a method of partition thresholds acquisition combining linear and nonlinear fuzzy entropy theory is proposed. Furthermore, boundary regions in three-way clustering correspond to the abstaining decisions and generate uncertain rules. In order to improve the classification accuracy, the k-nearest neighbor (kNN) algorithm is utilized to reduce the objects in the boundary regions. The experimental results show that the performance of the proposed three-way clustering based on fuzzy covering and kNN-FRFCM algorithm is better than the compared algorithms in most cases.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 166
Author(s):  
Majed Aljunaid ◽  
Yang Tao ◽  
Hongbo Shi

Partial least squares (PLS) and linear regression methods are widely utilized for quality-related fault detection in industrial processes. Standard PLS decomposes the process variables into principal and residual parts. However, as the principal part still contains many components unrelated to quality, if these components were not removed it could cause many false alarms. Besides, although these components do not affect product quality, they have a great impact on process safety and information about other faults. Removing and discarding these components will lead to a reduction in the detection rate of faults, unrelated to quality. To overcome the drawbacks of Standard PLS, a novel method, MI-PLS (mutual information PLS), is proposed in this paper. The proposed MI-PLS algorithm utilizes mutual information to divide the process variables into selected and residual components, and then uses singular value decomposition (SVD) to further decompose the selected part into quality-related and quality-unrelated components, subsequently constructing quality-related monitoring statistics. To ensure that there is no information loss and that the proposed MI-PLS can be used in quality-related and quality-unrelated fault detection, a principal component analysis (PCA) model is performed on the residual component to obtain its score matrix, which is combined with the quality-unrelated part to obtain the total quality-unrelated monitoring statistics. Finally, the proposed method is applied on a numerical example and Tennessee Eastman process. The proposed MI-PLS has a lower computational load and more robust performance compared with T-PLS and PCR.


As the world is getting digitalized, the rush for need of secured data communication is overtop. Provoked by the vulnerability of human visual system to understand the progressive changes in the scenes, a new steganography method is proposed. The paper represents a double protection methodology for secured transmission of data. The original data is hidden inside a cover image using LSB substitution algorithm. The image obtained is inserted inside a frame of the video producing a stego-video. Stego-video attained is less vulnerable to attacks. After decryption phase, the original text is obtained which is error-free and the output image obtained is similar as the cover image. The quality of stego-video is high and there is no need for additional bandwidth for transmission. The hardware implement is required in order to calculate the corresponding analytical results. The proposed algorithm is examined and realized for various encryption standards using Raspberry Pi3 embedded hardware. The results obtained focuses on the attributes of the proposed model. On comparing with other conventional algorithms, the proposed scheme exhibits high performance in both encryption and decryption process with increase in efficiency of secured data communication.


2020 ◽  
Vol 34 (04) ◽  
pp. 6704-6711
Author(s):  
Zheng Yu ◽  
Xuhui Fan ◽  
Marcin Pietrasik ◽  
Marek Z. Reformat

The Mixed-Membership Stochastic Blockmodel (MMSB) is proposed as one of the state-of-the-art Bayesian relational methods suitable for learning the complex hidden structure underlying the network data. However, the current formulation of MMSB suffers from the following two issues: (1), the prior information (e.g. entities' community structural information) can not be well embedded in the modelling; (2), community evolution can not be well described in the literature. Therefore, we propose a non-parametric fragmentation coagulation based Mixed Membership Stochastic Blockmodel (fcMMSB). Our model performs entity-based clustering to capture the community information for entities and linkage-based clustering to derive the group information for links simultaneously. Besides, the proposed model infers the network structure and models community evolution, manifested by appearances and disappearances of communities, using the discrete fragmentation coagulation process (DFCP). By integrating the community structure with the group compatibility matrix we derive a generalized version of MMSB. An efficient Gibbs sampling scheme with Polya Gamma (PG) approach is implemented for posterior inference. We validate our model on synthetic and real world data.


Sign in / Sign up

Export Citation Format

Share Document