Two-loop controller design and implementations for an inverted pendulum system with optimal self-adaptive fuzzy-proportional–integral–derivative control

Author(s):  
Tayfun Abut ◽  
Servet Soyguder

Since inverted pendulum systems (IPSs) are under-actuated systems, controlling these systems has become an important problem. Because of their irregular movements and being structurally unstable, the balancing of these systems poses a major problem. In this study, the dynamic model of a linear IPS has been obtained by using the Newton–Euler method and also conventional proportional–integral–derivative (PID), fuzzy logic (FLC), and self-adaptive fuzzy-proportional–integral–derivative (SAF-PID) control algorithms have been designed for the control of the system. The purpose of these designed controllers is to keep the arms of the IPS on the moving cart in a vertical position and bring the cart to the specified equilibrium position. In conventional control methods, unwanted oscillations have occurred during the movement of the cart. By using two-loop control methods, it is aimed to reduce these oscillations and to design a robust system. The results have been obtained using the conventional PID, FLC, and SAF-PID controllers. To increase the performance of the SAF-PID control type, the optimum value of the coefficients of the points where the legs of the membership functions touch were calculated using the firefly optimization algorithm. To conclude, the designed controllers were performed on computer simulation. The results are given graphically and numerically. Mean absolute error (MAE), mean squared error, integral absolute error IAE, and integral squared error have been compared and examined with each other and with the studies in the literature using performance criteria. As a result, the proposed control method was at least 26.31% more successful in the angular control of the pendulum and at least 9.26% better in the position control of the cart than the studies in the literature.

Author(s):  
G. Guna ◽  
D. Prabhakaran ◽  
M. Thirumarimurugan

Abstract In this paper, a single-stage pilot-scale RO (Reverse Osmosis) process is considered. The process is mainly used in various chemical industries such as dye, pharmaceutical, Beverage, and so on. Initially, mathematical modeling of the process is to be done followed by linearization of the system. Here a dual loop construction with a master and a slave is used. The slave uses the conventional PID (Proportional Integral Derivative) with a reference model of the RO process and the master uses the FOPID (Fractional Order Proportional Integral Derivative) with a real time RO process. The slave's output is compared with output of the real time RO process to obtain the error which is in turn used to tune the master. The slave controller is tuned using Ziegler Nicholas method and the error criterion such as IAE (Integral Absolute Error), ISE (Integral Squared Error), ITSE (Integral Time Squared Error), ITAE (Integral Time Absolute Error) are calculated and the minimum among them was chosen as the objective function for the master loop tuning. Hence the tuning of the controller becomes a whole. Therefore two optimization techniques such as PSO (Particle Swarm Optimization) and Bacterial Foraging Optimization Algorithm (BFO) are used for the tuning of the master loop. From the calculations the ITSE was having the minimum value among the performance indices hence it was used as the objective function for the BFO and PSO. The best-tuned values will be obtained with the use of these techniques and the best among all can be considered for various industrial applications. Finally, the performance of the process is compared with both techniques and BFO outperforms the PSO from the simulations.


2013 ◽  
Vol 846-847 ◽  
pp. 321-324 ◽  
Author(s):  
Le Peng Song ◽  
Hua Bin Wang

As liquid level cascade system has the character the issue of non-linearity ,time variability and the overshoot,tradition PID control can not meet the requirement of precise molding system. So devise a self-_ adaptive fuzzy PID control .A self-_ adaptive fuzzy PID control combined PID to control calculate way and faintness to control the advantage of method, this text permits water tank to carry on mathematics model to design the double permit a water tank liquid misty PID string class control system. Matlab/Simulink and fuzzy logic toolbox are simulated to the single loop PID control system,the cascade control system and the cascade control system based on fuzzy self-tuning PID were simulated with Simulink. The analysis and simulation results indicate that the character issue of non-linearity ,time variability and the overshoot of the liquid level cascade control system based on a self-_ adaptive fuzzy PID controller are superior to previous of two methods.


Transmisi ◽  
2018 ◽  
Vol 20 (2) ◽  
pp. 71
Author(s):  
Bagus Bernadi Saputra ◽  
Wahyudi Wahyudi ◽  
Sudjadi Sudjadi

Base station atau Ground Control Station (GCS) umumnya menggunakan antena directional untuk dapat berkomunikasi dengan objek bergerak seperti roket dan Unmanned Aerial Vehicle (UAV). Antena directional memiliki jarak jangkau yang jauh, namun memiliki sudut pancar yang sempit. Untuk mengatasi kekurangan dari antena directional, diperlukan alat yang dapat menggerakkan antena ke arah objek bergerak secara nyata pada kisaran sudut azimut dan elevasi. Pada penelitian ini, dirancang alat penggerak antena menggunakan metode kontrol Proportional, Integral, dan Derivative (PID) untuk melacak objek bergerak berbasis Global Positioning System (GPS) dan sensor barometer. Dari hasil perancangan dengan menggunakan nilai parameter PID yang digunakan pada sudut elevasi (Kp=0,03, Ti=150, dan Td=0,22) menghasilkan plant yang mampu mencapai setpoint (74o) dalam waktu 2 detik. Parameter PID yang digunakan pada sudut azimut (Kp=3,5, Ti=100, dan Td=0,09) menghasilkan plant yang mampu mencapai setpoint (180o) dalam waktu 1,1 detik. Dari hasil pengujian, diketahui antena dapat mengikuti objek bergerak (drone) dengan waktu terlama 1 detik pada plant azimut dan 1,5 detik pada plant elevasi. Plant elevasi memiliki Mean Absolute Error (MAE) = 6,54o dan plant azimut memiliki MAE = 8,04o.


2014 ◽  
Vol 903 ◽  
pp. 327-331 ◽  
Author(s):  
Ismail Mohd Khairuddin ◽  
Anwar P.P.A. Majeed ◽  
Ann Lim ◽  
Jessnor Arif M. Jizat ◽  
Abdul Aziz Jaafar

This paper elucidates the modeling of a + quadrotor configuration aerial vehicle and the design of its attitude and altitude controllers. The aircraft model consists of four fixed pitch angle propeller, each driven by an electric DC motor. The hovering flight of the quadrotor is governed by the Newton-Euler formulation. The attitude and altitude controls of the aircraft were regulated using heuristically tuned (Proportional-Integral-Derivative) PID controller. It was numerically simulated via Simulink that a PID controller was sufficient to bring the aircraft to the required altitude whereas the attitude of the vehicle is adequately controlled by a PD controller.


2019 ◽  
Vol 255 ◽  
pp. 04001 ◽  
Author(s):  
Nur Iffah Mohamed Azmi ◽  
Nafrizuan Mat Yahya ◽  
Ho Jun Fu ◽  
Wan Azhar Wan Yusoff

The development of combination of proportional-integral-derivative and proportional- derivative (PID-PD) controller for overhead crane is presented. Due to the pendulum-like settings, the swinging of load has caused many difficulties while operating the overhead crane. Swinging of the load causes unnecessary tension to the cable and structure of the overhead crane, which will compromise the safety of operator and other workers. Overhead cranes should have the ability to move the load to desired point as fast as possible while minimizing the load swing and maintaining the accuracy. Proportional-integral-derivative (PID) controller is used for overhead crane positioning and proportional-derivative (PD) controller for load oscillation. New time-domain performance criterion function is used in particle swarm optimization (PSO) algorithm for the tuning of the PID-PD controller rather than the general performance criteria using error of the system. This performance criterion function monitors the performance in terms of rise time, overshoot, settling time and steady state error of the overhead crane system. The performance of the optimised PID-PD controller is verified with simulation in MATLAB. The PSO optimized PID-PD controllers with new performance criterion are shown effective in improving the step response of the overhead crane position as well as controlled the load oscillation.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
K. Ghousiya Begum ◽  
A. Seshagiri Rao ◽  
T. K. Radhakrishnan

Abstract This manuscript deals with the assessment of parallel form of proportional integral derivative (PID) control structure for tracking the reference input designed for large dominant time constant processes whose dynamics are slow (integrating processes). The theoretical bound of integral absolute error (IAE) which is established for unstable first order process is extended to pure integrating process without using any approximations. This relies on direct synthesis tuning (DS) and the theoretical bound is obtained from the transfer function of closed loop system subjected to ramp input changes. An error based performance index is formulated on the basis of this IAE theoretical bound and actual IAE, to measure the behaviour of the controller employed for non self regulating (integrating) processes. This error based index evaluates the performance of closed loop controller and specifies whether the controller requires retuning or not. A sequence of simulated examples is used to illustrate the benefit and effectiveness of this new performance assessment method.


Sign in / Sign up

Export Citation Format

Share Document