scholarly journals Solar radiation reflective coating material on building envelopes: Heat transfer analysis and cooling energy saving

2017 ◽  
Vol 35 (6) ◽  
pp. 748-766 ◽  
Author(s):  
Yin Zhang ◽  
Enshen Long ◽  
Yanru Li ◽  
Pan Li
2014 ◽  
Vol 881-883 ◽  
pp. 1233-1236
Author(s):  
Zhong Hua Wang

In this paper, ways of heat transfer through windows and doors between the indoor and outdoor environment in the northern area are summarized. And every heat transfer way is described by mathematical formula. On this basis, methods to improve the energy saving performance of exterior windows are put forward according to factors affecting heat transfer through windows. The first method is increasing solar radiation heat, and then reducing heat loss by infiltration, and increasing the thermal resistance as much as possible. Ideal form of energy-saving window is proposed based on compared windows with different material and thermal resistance.


2018 ◽  
Vol 39 (1) ◽  
pp. 68-75
Author(s):  
S.P. Aadhy ◽  
T. Hema Sinega ◽  
C. Karthikeyan ◽  
S. Akshay ◽  
Mohan Kumar Pitchan ◽  
...  

Abstract This work investigates the possibility of using polyetherimide (PEI) as an energy saving alternative to glass, polymethylmethacrylate (PMMA) and polycarbonate (PC) by carrying out heat transfer analysis and suggests vaporized solvent bonding as a viable bonding technique for the fabrication of PEI. By heat transfer analysis using building energy simulation, it is observed that less energy is expended for space-conditioning of a building with windows made of PEI when compared to glass, PMMA and PC. The compression moulding technique is used to mould PEI and fabrication is done using a solvent mixture of dimethyl sulfoxide and tetrahydrofuran in 1:1 ratio. The optical properties of the bonded specimen are studied using UV-visible spectrophotometry and it is found that PEI does not allow UV wavelength radiation to pass through while transmitting visible wavelengths. The mechanical strength of the bond is tested using lap shear tensile strength test and the type of failure is observed to be cohesive from the structure. This is indicative of the fact that using this particular solvent to bond PEI results in the maximum possible strength.


This chapter consists of two sections, ‘Hydrogen Production Characteristics of a Bioethanol Solar Reforming System with Solar’ and ‘Efficiency Analysis of a Combined PEFC and Bioethanol-Solar-Reforming System for Individual Houses’. Heat transfer analysis applied in reforming the catalyst layer of the reactor of FBSR (bioethanol steam reforming system) and the temperature distribution and transient response characteristics of the gas composition of the process are investigated in the 1st section The overall efficiency of the production of electricity and heat power of the FBSR system is determined by examining its thermal output characteristic in the 2nd section. It dependes for the overall efficiency of the system on the amount of solar radiation fluctuation rather than the amount of solar radiation.


2011 ◽  
Vol 347-353 ◽  
pp. 3116-3119
Author(s):  
Jing Hong Yao

Vacuum is an important economic indicator of influencing turbine load and thermal efficiency. And heat transfer efficiency affects the level of vacuum directly. From the point of heat transfer analysis, combining with the production practice in a power plant, this paper proposes a method of improving heat transfer effectiveness and the condenser exchanging condition. Through the method of reducing the heat load of condenser, improving the tightness of the vacuum system, cleaning the heat surface and reducing the cooling water temperature, we improve the vacuum and reach the aim of energy saving.


2012 ◽  
Vol 204-208 ◽  
pp. 2236-2239 ◽  
Author(s):  
Bo Chen ◽  
Wei Hua Guo ◽  
Chun Fang Song ◽  
Kai Kai Lu

Bridge tower, time-varying temperature field, heat transfer analysis, finite element model. Abstract. Long span suspension bridges are subjected to daily, seasonal and yearly environmental thermal effects induced by solar radiation and ambient air temperature. This paper aims to investigate the temperature distribution of a tower of a long span suspension bridge. Two-dimensional heat transfer models are utilized to determine the time-dependent temperature distribution of the bridge tower of the bridge. The solar radiation model is utilized to examine the time-varying temperature distribution. Finite element models are constructed for the bridge tower to compute the temperature distribution. The numerical models can successfully predict the structural temperature field at different time. The methodology employed in the paper can be applied to other long-span bridges as well.


Solar Energy ◽  
2007 ◽  
Vol 81 (10) ◽  
pp. 1306-1313 ◽  
Author(s):  
C.A. Estrada ◽  
O.A. Jaramillo ◽  
R. Acosta ◽  
C.A. Arancibia-Bulnes

2010 ◽  
Vol 44-47 ◽  
pp. 158-162
Author(s):  
Bo Chen ◽  
Jin Zheng ◽  
Jian Ping Wang

The analysis of time-varying temperature field of a composite concrete-steel deck plate under strong solar radiation is carried out in this study. By assuming the temperature distribution along the bridge longitudinal direction is basically constant, one typical segment of the deck plate is investigated. Two-dimensional heat transfer models are utilized to determine the time-dependent temperature distribution of deck plate, deck trough and deck pavement of the bridge. A modified solar radiation model is utilized to predict the variation of solar radiation in a whole day. A thermodynamic model is established and a transient heat transfer analysis is conducted to predict the time-varying temperature distribution of the deck plate at different time. The measured ambient temperature data are used as thermal boundary conditions during the numerical analysis. The made observations demonstrate that the simulated temperature variation of the deck plate based on the modified solar radiation model agrees well with measurement results, as compared with those obtained from the traditional solar radiation model..


Author(s):  
Mustafa Özçatalbaş ◽  
Emre Kütükçeken ◽  
Bülent Acar

In aerospace industry, temperature of structures protected in an enclosed volume that are subjected to solar radiation should be known for critical applications. For instance, temperature of solid rocket engines (SRE) before they are ignited is critical for their operations. Therefore, numerical and experimental methods have been used to determine temperature of the SREs. In this study, a novel methodology, which gives the accurate temperature data of bodies placed in enclosed volumes like SREs in terms of hours instead of performing computational fluid dynamics (CFD) for days, was developed. The study included transient uncoupled heat transfer analysis with finite element (FE) method to predict the temperature distribution on a hollow cylindrical body located in a rectangular prism volume and the FE results were compared with a field test. Hourly solar radiation on a horizontal surface and hourly temperature values were measured by pyranometer to obtain the inputs for FE heat transfer analysis. For the tilted surfaces, solar radiation values were calculated by using the data obtained from pyranometer measurements. Absorptivity of enclosed volume was taken into account to determine the actual heat flow in the areas exposed directly to sunlight. Also, ground properties were selected identical to test condition to represent proper ground reflected radiation. Thermal conductance between the inner surfaces of enclosed volume and outer surfaces of cylindrical body has been defined to enable heat transfer mechanism between two separate components. In consequence of having accurate thermal conduction interactions between the inner surfaces of the FE model, CFD calculations of natural convection which was taken place inside the enclosed volume was eliminated. When the FE analysis-test comparison was concluded, it was observed that the calculated temperature values were found to be close agreement with measured temperatures and maximum error was within 10%. Furthermore, computation time was significantly reduced.


Sign in / Sign up

Export Citation Format

Share Document