Quantitative Assessment of the Immune Microenvironment in Patients With Iatrogenic Laryngotracheal Stenosis

2020 ◽  
pp. 019459982097827
Author(s):  
Ruth J. Davis ◽  
Ioan Lina ◽  
Benjamin Green ◽  
Elizabeth L. Engle ◽  
Kevin Motz ◽  
...  

Objective Iatrogenic laryngotracheal stenosis (iLTS) is characterized by fibroinflammatory narrowing of the upper airway and is most commonly caused by intubation injury. Evidence suggests a key role for CD4 T cells in its pathogenesis. The objective of this study is to validate emerging multiplex immunofluorescence (mIF) technology for use in the larynx and trachea while quantitatively characterizing the immune cell infiltrate in iLTS. In addition to analyzing previously unstudied immune cell subsets, this study aims to validate previously observed elevations in the immune checkpoint PD-1 and its ligand PD-L1 while exploring their spatial and cellular distributions in the iLTS microenvironment. Study Design Controlled ex vivo cohort study. Setting Tertiary care center. Methods mIF staining was performed with formalin-fixed, paraffin-embedded slides from 10 patients with iLTS who underwent cricotracheal resection and 10 control specimens derived from rapid autopsy for CD4, CD8, CD20, FoxP3, PD-1, PD-L1, and cytokeratin. Results There was greater infiltration of CD4+ T cells, CD8+ T cells, CD20+ B cells, FoxP3+CD4+ Tregs, and FoxP3+CD8+ early effector T cells in the submucosa of iLTS specimens as compared with controls ( P < .05 for all). PD-1 was primarily expressed on T cells and PD-L1 predominantly on CD4+ cells and “other” cells. Conclusion This study leverages the power of mIF to quantify the iLTS immune infiltrate in greater detail. It confirms the highly inflammatory nature of iLTS, with CD4+ cells dominating the immune cell infiltrate; it further characterizes the cellular and spatial distribution of PD-1 and PD-L1; and it identifies novel immunologic targets in iLTS.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A637-A637
Author(s):  
Manoj Chelvanambi ◽  
Ronald Fecek ◽  
Jennifer Taylor ◽  
Walter Storkus

BackgroundThe degree of immune infiltration in tumors, especially CD8+ T cells, greatly impacts patient disease course and response to interventional immunotherapy. Hence, enhancement of TIL prevalence is a preferred clinical endpoint, one that may be achieved via administration of agents that normalize the tumor vasculature (VN) leading to improved immune cell recruitment and/or that induce the development of local tertiary lymphoid structures (TLS) within the tumor microenvironment (TME).MethodsLow-dose STING agonist ADU S-100 (5 μg/mouse) was delivered intratumorally to established s.c. B16.F10 melanomas on days 10, 14 and 17 post-tumor inoculation under an IACUC-approved protocol. Treated and control, untreated tumors were isolated at various time points to assess transcriptional changes associated with VN and TLS formation via qPCR, with corollary immune cell composition changes determined using flow cytometry and immunofluorescence microscopy. In vitro assays were performed on CD11c+ BMDCs treated with 2.5 μg/mL ADU S-100 (vs PBS control) and associated transcriptional changes analyzed via qPCR or profiled using DNA microarrays. For TCRβ-CDR3 analyses, CDR3 was sequenced from gDNA isolated from enzymatically digested tumors and splenocytes.ResultsWe report that activation of STING within the TME leads to slowed melanoma growth in association with increased production of angiostatic factors including Tnfsf15 (Vegi), Cxcl10 and Angpt1, and TLS inducing factors including Ccl19, Ccl21, Lta, Ltb and Tnfsf14 (Light). Therapeutic responses from intratumoral STING activation were characterized by increased vascular normalization (VN), enhanced tumor infiltration by CD8+ T cells and CD11c+ DCs and local TLS neo-genesis, all of which were dependent on host expression of STING. Consistent with a central role for DC in TLS formation, ex vivo ADU S-100-activated mCD11c+ DCs also exhibited upregulated expression of TLS promoting factors including lymphotoxin-α (LTA), IL-36, inflammatory chemokines and type I interferons. TLS formation was associated with the development of a therapeutic TIL TCR repertoire enriched in T cell clonotypes uniquely detected within the tumor but not the peripheral circulation in support or local T cell cross-priming within the TME.ConclusionsOur data support the premise that i.t. delivery of STING agonist promotes a pro-inflammatory TME in support of VN and TLS formation, leading to the local expansion of unique TIL repertoire in association with superior anti-melanoma efficacy.


2021 ◽  
Author(s):  
Anna H.E. Roukens ◽  
Marion König ◽  
Tim Dalebout ◽  
Tamar Tak ◽  
Shohreh Azimi ◽  
...  

AbstractThe immune system plays a major role in Coronavirus Disease 2019 (COVID-19) pathogenesis, viral clearance and protection against re-infection. Immune cell dynamics during COVID-19 have been extensively documented in peripheral blood, but remain elusive in the respiratory tract. We performed minimally-invasive nasal curettage and mass cytometry to characterize nasal immune cells of COVID-19 patients during and 5-6 weeks after hospitalization. Contrary to observations in blood, no general T cell depletion at the nasal mucosa could be detected. Instead, we observed increased numbers of nasal granulocytes, monocytes, CD11c+ NK cells and exhausted CD4+ T effector memory cells during acute COVID-19 compared to age-matched healthy controls. These pro-inflammatory responses were found associated with viral load, while neutrophils also negatively correlated with oxygen saturation levels. Cell numbers mostly normalized following convalescence, except for persisting CD127+ granulocytes and activated T cells, including CD38+ CD8+ tissue-resident memory T cells. Moreover, we identified SARS-CoV-2 specific CD8+ T cells in the nasal mucosa in convalescent patients. Thus, COVID-19 has both transient and long-term effects on the immune system in the upper airway.


Hematology ◽  
2017 ◽  
Vol 2017 (1) ◽  
pp. 310-316 ◽  
Author(s):  
W. Robert Liu ◽  
Margaret A. Shipp

Abstract Classical Hodgkin lymphoma (cHL) is an unusual B-cell–derived malignancy in which rare malignant Hodgkin and Reed-Sternberg (HRS) cells are surrounded by an extensive but ineffective inflammatory/immune cell infiltrate. This striking feature suggests that malignant HRS cells escape immunosurveillance and interact with immune cells in the cancer microenvironment for survival and growth. We previously found that cHLs have a genetic basis for immune evasion: near-uniform copy number alterations of chromosome 9p24.1 and the associated PD-1 ligand loci, CD274/PD-L1 and PDCD1LG2/PD-L2, and copy number–dependent increased expression of these ligands. HRS cells expressing PD-1 ligands are thought to engage PD-1 receptor–positive immune effectors in the tumor microenvironment and induce PD-1 signaling and associated immune evasion. The genetic bases of enhanced PD-1 signaling in cHL make these tumors uniquely sensitive to PD-1 blockade.


2020 ◽  
Vol 10 ◽  
Author(s):  
Kasia A. Sablik ◽  
Ekaterina S. Jordanova ◽  
Noelle Pocorni ◽  
Marian C. Clahsen-van Groningen ◽  
Michiel G. H. Betjes

Blood ◽  
2017 ◽  
Vol 130 (21) ◽  
pp. 2265-2270 ◽  
Author(s):  
W. Robert Liu ◽  
Margaret A. Shipp

Abstract Classical Hodgkin lymphoma (cHL) is an unusual B-cell–derived malignancy in which rare malignant Hodgkin and Reed-Sternberg (HRS) cells are surrounded by an extensive but ineffective inflammatory/immune cell infiltrate. This striking feature suggests that malignant HRS cells escape immunosurveillance and interact with immune cells in the cancer microenvironment for survival and growth. We previously found that cHLs have a genetic basis for immune evasion: near-uniform copy number alterations of chromosome 9p24.1 and the associated PD-1 ligand loci, CD274/PD-L1 and PDCD1LG2/PD-L2, and copy number–dependent increased expression of these ligands. HRS cells expressing PD-1 ligands are thought to engage PD-1 receptor–positive immune effectors in the tumor microenvironment and induce PD-1 signaling and associated immune evasion. The genetic bases of enhanced PD-1 signaling in cHL make these tumors uniquely sensitive to PD-1 blockade.


2018 ◽  
Vol 20 (suppl_2) ◽  
pp. i74-i75
Author(s):  
Timothy A Ritzmann ◽  
Francesca Francis ◽  
Sarah-Louise Brudenell ◽  
Hazel A Rogers ◽  
Alex Virasami ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Dazhi Zhang ◽  
Yong Liu ◽  
Min Shi ◽  
Chang Xuan You ◽  
Maohua Cao ◽  
...  

The adoptive transfer of antigen-specific cytotoxic T lymphocytes (CTL) shows promise in the treatment of cancer and infectious diseases. We utilize adeno-associated virus-(AAV-) based antigen gene-loaded dendritic cells (DCs) to stimulate such antigen-specific CTL. Yet further improvements in CTL stimulation and killing may result by gene delivery of various Th1-response interferons/cytokines, such as interferonγ(IFN-γ), as the delivered gene can continuously produce that interferon. However which immune cell type should optimally express IFN-γis unclear as the phenotypes of both DC and T cells are enhanced by it. Here, we used AAV to compare and contrast IFN-γgene delivery into DC or T cells, and versus the addition of exogenous IFN-γ, for stimulating carcinoembryonic antigen-(CEA-) specific CTL. It was found that AAV/IFN-γdelivery into T cells (autocrine) resulted in T cell populations with the highest CD8(+)/CD4(+) ratio, highest IFN-γ(+)/IL-4(+) ratio, highest CD69(+),CD8(+) levels, and lowest CD4(+)/CD25(+) levels, all consistent with the strongest Th1 response. Most importantly, AAV/IFN-γtransduction of T cells resulted in antigen-specific T cell populations with the highest killing capabilities, 49% above other treatments. These data strongly suggest that AAV/IFN-γautocrine gene delivery into T cells is worthy of further study towards maximizing the generation of antigen-specific anticancer CTL killers.


2013 ◽  
Vol 15 (11) ◽  
pp. 1479-1490 ◽  
Author(s):  
L. Fang ◽  
D. E. Lowther ◽  
M. L. Meizlish ◽  
R. C. E. Anderson ◽  
J. N. Bruce ◽  
...  

2011 ◽  
Vol 115 (3) ◽  
pp. 505-511 ◽  
Author(s):  
Isaac Yang ◽  
Seunggu J. Han ◽  
Michael E. Sughrue ◽  
Tarik Tihan ◽  
Andrew T. Parsa

Object The tumor microenvironment in astrocytomas is composed of a variety of cell types, including infiltrative inflammatory cells that are dynamic in nature, potentially reflecting tumor biology. In this paper the authors demonstrate that characterization of the intratumoral inflammatory infiltrate can distinguish high-grade glioblastoma from low-grade pilocytic astrocytoma. Methods Tumor specimens from ninety-one patients with either glioblastoma or pilocytic astrocytoma were analyzed at the University of California, San Francisco. A systematic neuropathology analysis was performed. All tissue was collected at the time of the initial surgery prior to adjuvant treatment. Immune cell infiltrate not associated with necrosis or hemorrhage was analyzed on serial 4-μm sections. Analysis was performed for 10 consecutive hpfs and in 3 separate regions (total 30 × 0.237 mm2). Using immunohistochemistry for markers of infiltrating cytotoxic T cells (CD8), natural killer cells (CD56), and macrophages (CD68), the inflammatory infiltrates in these tumors were graded quantitatively and classified based on microanatomical location (perivascular vs intratumoral). Control markers included CD3, CD20, and human leukocyte antigen. Results Glioblastomas exhibited significantly higher perivascular (CD8) T-cell infiltration than pilocytic astrocytomas (62% vs 29%, p = 0.0005). Perivascular (49%) and intratumoral (89%; p = 0.004) CD56-positive cells were more commonly associated with glioblastoma. The CD68-positive cells also were more prevalent in the perivascular and intratumoral space in glioblastoma. In the intratumoral space, all glioblastomas exhibited CD68-positive cells compared with 86% of pilocytic astrocytomas (p = 0.0014). Perivascularly, CD68-positive infiltrate was also more prevalent in glioblastoma when compared with pilocytic astrocytoma (97% vs 86%, respectively; p = 0.0003). The CD3-positive, CD20-positive, and human leukocyte antigen-positive infiltrates did not differ between glioblastoma and pilocytic astrocytoma. Conclusions This analysis suggests a significantly distinct immune profile in the microenvironment of high-grade glioblastoma versus low-grade pilocytic astrocytoma. This difference in tumor microenvironment may reflect an important difference in the tumor biology of glioblastoma.


Pathology ◽  
2008 ◽  
Vol 40 (7) ◽  
pp. 682-693 ◽  
Author(s):  
Mahmoud-Rezk A. Hussein ◽  
Noha M. Aboulhagag ◽  
Hesham S. Atta ◽  
Saad M. Atta

Sign in / Sign up

Export Citation Format

Share Document