scholarly journals Autocrine, Not Paracrine, Interferon-Gamma Gene Delivery Enhances Ex Vivo Antigen-Specific Cytotoxic T Lymphocyte Stimulation and Killing

2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Dazhi Zhang ◽  
Yong Liu ◽  
Min Shi ◽  
Chang Xuan You ◽  
Maohua Cao ◽  
...  

The adoptive transfer of antigen-specific cytotoxic T lymphocytes (CTL) shows promise in the treatment of cancer and infectious diseases. We utilize adeno-associated virus-(AAV-) based antigen gene-loaded dendritic cells (DCs) to stimulate such antigen-specific CTL. Yet further improvements in CTL stimulation and killing may result by gene delivery of various Th1-response interferons/cytokines, such as interferonγ(IFN-γ), as the delivered gene can continuously produce that interferon. However which immune cell type should optimally express IFN-γis unclear as the phenotypes of both DC and T cells are enhanced by it. Here, we used AAV to compare and contrast IFN-γgene delivery into DC or T cells, and versus the addition of exogenous IFN-γ, for stimulating carcinoembryonic antigen-(CEA-) specific CTL. It was found that AAV/IFN-γdelivery into T cells (autocrine) resulted in T cell populations with the highest CD8(+)/CD4(+) ratio, highest IFN-γ(+)/IL-4(+) ratio, highest CD69(+),CD8(+) levels, and lowest CD4(+)/CD25(+) levels, all consistent with the strongest Th1 response. Most importantly, AAV/IFN-γtransduction of T cells resulted in antigen-specific T cell populations with the highest killing capabilities, 49% above other treatments. These data strongly suggest that AAV/IFN-γautocrine gene delivery into T cells is worthy of further study towards maximizing the generation of antigen-specific anticancer CTL killers.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A637-A637
Author(s):  
Manoj Chelvanambi ◽  
Ronald Fecek ◽  
Jennifer Taylor ◽  
Walter Storkus

BackgroundThe degree of immune infiltration in tumors, especially CD8+ T cells, greatly impacts patient disease course and response to interventional immunotherapy. Hence, enhancement of TIL prevalence is a preferred clinical endpoint, one that may be achieved via administration of agents that normalize the tumor vasculature (VN) leading to improved immune cell recruitment and/or that induce the development of local tertiary lymphoid structures (TLS) within the tumor microenvironment (TME).MethodsLow-dose STING agonist ADU S-100 (5 μg/mouse) was delivered intratumorally to established s.c. B16.F10 melanomas on days 10, 14 and 17 post-tumor inoculation under an IACUC-approved protocol. Treated and control, untreated tumors were isolated at various time points to assess transcriptional changes associated with VN and TLS formation via qPCR, with corollary immune cell composition changes determined using flow cytometry and immunofluorescence microscopy. In vitro assays were performed on CD11c+ BMDCs treated with 2.5 μg/mL ADU S-100 (vs PBS control) and associated transcriptional changes analyzed via qPCR or profiled using DNA microarrays. For TCRβ-CDR3 analyses, CDR3 was sequenced from gDNA isolated from enzymatically digested tumors and splenocytes.ResultsWe report that activation of STING within the TME leads to slowed melanoma growth in association with increased production of angiostatic factors including Tnfsf15 (Vegi), Cxcl10 and Angpt1, and TLS inducing factors including Ccl19, Ccl21, Lta, Ltb and Tnfsf14 (Light). Therapeutic responses from intratumoral STING activation were characterized by increased vascular normalization (VN), enhanced tumor infiltration by CD8+ T cells and CD11c+ DCs and local TLS neo-genesis, all of which were dependent on host expression of STING. Consistent with a central role for DC in TLS formation, ex vivo ADU S-100-activated mCD11c+ DCs also exhibited upregulated expression of TLS promoting factors including lymphotoxin-α (LTA), IL-36, inflammatory chemokines and type I interferons. TLS formation was associated with the development of a therapeutic TIL TCR repertoire enriched in T cell clonotypes uniquely detected within the tumor but not the peripheral circulation in support or local T cell cross-priming within the TME.ConclusionsOur data support the premise that i.t. delivery of STING agonist promotes a pro-inflammatory TME in support of VN and TLS formation, leading to the local expansion of unique TIL repertoire in association with superior anti-melanoma efficacy.


2018 ◽  
Vol 2 ◽  
pp. 105 ◽  
Author(s):  
Andrew Mwale ◽  
Annemarie Hummel ◽  
Leonard Mvaya ◽  
Raphael Kamng'ona ◽  
Elizabeth Chimbayo ◽  
...  

Background: HIV infection is associated with increased risk to lower respiratory tract infections (LRTI). However, the impact of HIV infection on immune cell populations in the lung is not well defined. We sought to comprehensively characterise the impact of HIV infection on immune cell populations in the lung. Methods: Twenty HIV-uninfected controls and 17 HIV-1 infected ART-naïve adults were recruited from Queen Elizabeth Central Hospital, Malawi. Immunophenotyping of lymphocyte and myeloid cell populations was done on bronchoalveolar lavage fluid and peripheral blood cells. Results: We found that the numbers of CD8 + T cells, B cells and gamma delta T cells were higher in BAL fluid of HIV-infected adults compared to HIV-uninfected controls (all p<0.05). In contrast, there was no difference in the numbers of alveolar CD4 + T cells in HIV-infected adults compared to HIV-uninfected controls (p=0.7065). Intermediate monocytes were the predominant monocyte subset in BAL fluid (HIV-, 63%; HIV+ 81%), while the numbers of classical monocytes was lower in HIV-infected individuals compared to HIV-uninfected adults (1 × 10 5 vs. 2.8 × 10 5 cells/100ml of BAL fluid, p=0.0001). The proportions of alveolar macrophages and myeloid dendritic cells was lower in HIV-infected adults compared to HIV-uninfected controls (all p<0.05). Conclusions: Chronic HIV infection is associated with broad alteration of immune cell populations in the lung, but does not lead to massive depletion of alveolar CD4 + T cells. Disruption of alveolar immune cell homeostasis likely explains in part the susceptibility for LRTIs in HIV-infected adults.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Patrick A Molina ◽  
Claudia J Edell ◽  
Rachel Q Muir ◽  
Jackson C Colson ◽  
Craig L Maynard ◽  
...  

High salt diets (HSD) promote both inflammation and immunosuppression as shown in numerous studies utilizing salt-sensitive or hypertensive models. However, mechanisms involved in the homeostatic immune response to HSD, alone, have not been fully elucidated. Regulatory T cells (FOXP3 + CD4 + T cells) play a role in host protection against disease or environmental stressors. Further, recent studies show that RORt + expression by Tregs may represent a functional adaptation by Tregs in response to alterations to the diet. Thus, we hypothesized that these Treg populations may expand in response to HSD alone, and a hypertensive insult prior to the HSD blunts this response. We designed experiments to determine whether Tregs and RORt + Tregs expand in response to HSD or with LNAME hypertension followed by HSD. We evaluated the following groups in male C57BL/6J mice: NSD (normal salt diet, 0.4% NaCl), LNAME/NSD (0.5mg/ml for 3-wks in drinking water, followed by 3-wks NSD), HSD (4% NaCl+1% NaCl in drinking water, 2-wks), or LNAME/HSD (0.5mg/mL for 3-wks in drinking water, with 1-wk NSD followed by 2-wks HSD). Following immune cell isolation, we utilized flow cytometry to phenotype renal and colonic T cells. Data are expressed as frequency of means (% of CD4 + TCRbeta + T cells)±SEM (n=3-8/group) compared to NSD. In kidneys, HSD significantly expanded Tregs and RORt + Tregs, while LNAME/HSD group was unchanged compared to controls (% Treg: NSD: 5.7±0.5; L-NAME: 6.5±0.5; HSD: 9.2±1.0**; LNAME/HSD: 6.2±0.3; % RORt + Treg: NSD: 0.4±0.07; L-NAME: 0.6±0.13; HSD: 1.8±0.41***; LNAME/HSD: 0.6±0.14; **p<0.01, ***p<0.001). In the colon, HSD significantly expanded Tregs and RORt + Tregs, whereas the LNAME/HSD group had no change in these T cell populations (% Treg: NSD: 36±2; LNAME: 42±1; HSD: 46±2*; LNAME/HSD: 43±2; % RORt + Tregs: NSD: 16±1; LNAME: 19±1; HSD: 23±1*; LNAME/HSD: 20±2; *p<0.05). These data suggest that Tregs and RORt + Tregs expand in response to HSD in the kidney and colon, with a greater magnitude of expansion by RORt + Tregs. However, this expansion of T cell populations is not evident in mice pre-exposed to a hypertensive insult. We propose that HSD stimulates pathways that promote Treg expansion, which may be associated with salt-resistance and protective mechanisms.


2019 ◽  
Vol 15 (11) ◽  
pp. 2229-2239 ◽  
Author(s):  
Zhuoran Tang ◽  
Fengzhen Mo ◽  
Aiqun Liu ◽  
Siliang Duan ◽  
Xiaomei Yang ◽  
...  

Adoptive cell-based immunotherapy typically utilizes cytotoxic T lymphocytes (CTLs), expanding these cells ex vivo. Such expansion is traditionally accomplished through the use of autologous APCs that are capable of interactions with T cells. However, incidental inhibitory program such as CTLA-4 pathway can impair T cell proliferation. We therefore designed a nanobody which is specific for CTLA-4 (CTLA-4 Nb 16), and we then used this molecule to assess its ability to disrupt CTLA-4 signaling and thereby overcome negative costimulation of T cells. With CTLA-4 Nb16 stimulation, dendritic cell/hepatocellular carcinoma fusion cells (DC/HepG2-FCs) enhanced autologous CD8+ T cell proliferation and production of IFN-γ in vitro, thereby leading to enhanced killing of tumor cells. Using this approach in the context of adoptive CD8+ immunotherapy led to a marked suppression of tumor growth in murine NOD/SCID hepatocarcinoma or breast cancer xenograft models. We also observed significantly increased tumor cell apoptosis, and corresponding increases in murine survival. These findings thus demonstrate that in response to nanobody stimulation, DC/tumor cells-FC-induced specific CTLs exhibit superior anti-tumor efficacy, making this a potentially valuable means of achieving better adoptive immunotherapy outcomes in cancer patients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3172-3172
Author(s):  
Melinda Roskos ◽  
Robert B. Levy

Abstract There is currently significant interest in the transplant field to develop adoptive-transfer strategies utilizing T cell populations to provide immediate immune function as well as long-term immune reconstitution following hematopoietic cell transplantation (HCT). Presumably, these pre-selected T cell populations could then be further expanded in the transplant recipient as a consequence of lymphopenia-induced proliferation. However, clinical application of adoptive transfer strategies has been limited by practical (time, expense) and technical (isolation and expansion of antigen-specific T cell populations) difficulties, hence more efficient approaches need to be identified. Recent reports have demonstrated the feasibility for the rapid ex vivo generation of transgenic memory CD8 populations. We investigated the potential of applying this ex vivo approach to generate and expand an immunodominant antigen-specific memory population from primary CD8 T cells. CD8 cells recognizing the mouse H60 epitope were selected as the antigen-specific CD8 population. The H60 glycoprotein is the ligand for NKG2D and the LTFNYRNL peptide is an immunodominant minor transplantation antigen. H60 is expressed by BALB.B (H2b) hematopoietic cells and recognized by C57BL/6 (B6) CD8 cells within the context of the H2Kb molecule. CD8 T cells from normal B6 spleens were positively selected using Miltenyi beads. The purified CD8 cells (97%) were then cultured with bone marrow-derived B6 DC, rmIL-2, and H60 peptide (1μM) for 3 days. Cells were harvested and re-cultured with rmIL-15 for 2–4 days. The resultant CD8 population was enriched 10 fold for tetramer-stained H60+ CD8 T cells (average: 3.0% of CD8 T cells). The H60+ CD8 cells displayed a memory phenotype as characterized by CD44+, Ly6C+, CD62Lintermed, and CD25lo expression. We hypothesized these H60+ CD8 T cells could be further expanded in transplant recipients by lymphopenia-induced proliferation. To determine the expansion and persistence of H60+ TM post-HCT, H60+-enriched CD8 cells were co-transplanted with T cell-depleted B6 bone marrow into 9.0Gy-conditioned syngeneic recipients. The phenotype and number of H60+ cells in recipient spleens and bone marrow were assessed beginning 3 days post-HCT. Notably, the H60+ CD8 cells maintained their memory phenotype and persisted at least 2 months post-transplant. The ex vivo-generated H60+ TM underwent a relative expansion of 1.5–2 fold as assessed in recipient spleens, similar to the post-transplant expansion of H60+ CD8 TM derived in vivo from B6 mice primed to BALB.B cells. Moreover, this post-HCT expansion was also similar to that by an ex vivo-generated, transgenic CD8 TM population. Both (ex vivo and in vivo generated) H60+ TM populations also exhibited expansion (1.5–2 fold) in the bone marrow. In total, an immunodominant antigen-specific CD8 TM population was selectively generated and enriched ex vivo and found to undergo expansion following transplant into ablatively conditioned HCT recipients. The similarities in expansion and persistence between ex vivo generated H60 and in vivo primed H60 populations suggest this approach may have useful applications towards the development of successful adoptive transfer strategies.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 598
Author(s):  
Valérie Janelle ◽  
Jean-Sébastien Delisle

Over the last decades, cellular immunotherapy has revealed its curative potential. However, inherent physiological characteristics of immune cells can limit the potency of this approach. Best defined in T cells, dysfunction associated with terminal differentiation, exhaustion, senescence, and activation-induced cell death, undermine adoptive cell therapies. In this review, we concentrate on how the multiple mechanisms that articulate the various forms of immune dysfunction impact cellular therapies primarily involving conventional T cells, but also other lymphoid subtypes. The repercussions of immune cell dysfunction across the full life cycle of cell therapy, from the source material, during manufacturing, and after adoptive transfer, are discussed, with an emphasis on strategies used during ex vivo manipulations to limit T-cell dysfunction. Applicable to cellular products prepared from native and unmodified immune cells, as well as genetically engineered therapeutics, the understanding and potential modulation of dysfunctional features are key to the development of improved cellular immunotherapies.


2017 ◽  
Vol 2 ◽  
pp. 105 ◽  
Author(s):  
Andrew Mwale ◽  
Annemarie Hummel ◽  
Leonard Mvaya ◽  
Raphael Kamng'ona ◽  
Elizabeth Chimbayo ◽  
...  

Background: HIV infection is associated with increased risk to lower respiratory tract infections (LRTI). However, the impact of HIV infection on immune cell populations in the lung is not well defined. We sought to comprehensively characterise the impact of HIV infection on immune cell populations in the lung. Methods: Twenty HIV-uninfected controls and 17 HIV-1 infected ART-naïve adults were recruited from Queen Elizabeth Central Hospital, Malawi. Immunophenotyping of lymphocyte and myeloid cell populations was done on bronchoalveolar lavage fluid and peripheral blood cells. Results: We found that the numbers of CD8 + T cells, B cells and gamma delta T cells were higher in BAL fluid of HIV-infected adults compared to HIV-uninfected controls (all p<0.05). In contrast, there was no difference in the numbers of alveolar CD4 + T cells in HIV-infected adults compared to HIV-uninfected controls (p=0.7065). Intermediate monocytes were the predominant monocyte subset in BAL fluid (HIV-, 63%; HIV+ 81%), while the numbers of classical monocytes was lower in HIV-infected individuals compared to HIV-uninfected adults (1 × 10 5 vs. 2.8 × 10 5 cells/100ml of BAL fluid, p=0.0001). The proportions of alveolar macrophages and myeloid dendritic cells was lower in HIV-infected adults compared to HIV-uninfected controls (all p<0.05). Conclusions: Chronic HIV infection is associated with broad alteration of immune cell populations in the lung, but does not lead to massive depletion of alveolar CD4 + T cells. Disruption of alveolar immune cell homeostasis likely explains in part the susceptibility for LRTIs in HIV-infected adults.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1294
Author(s):  
Richard M. Powell ◽  
Marlies J. W. Peeters ◽  
Anne Rahbech ◽  
Pia Aehnlich ◽  
Tina Seremet ◽  
...  

There is an increasing interest in the development of Receptor Tyrosine Kinases inhibitors (RTKIs) for cancer treatment, as dysregulation of RTK expression can govern oncogenesis. Among the newer generations of RTKIs, many target Mer Tyrosine Kinase (MERTK) and Fms related RTK 3 (FLT3). Next to being overexpressed in many cancers, MERTK and FLT3 have important roles in immune cell development and function. In this study, we address how the new generation and potent RTKIs of MERTK/FLT3 affect human primary CD8+ T cell function. Using ex vivo T cell receptor (TCR)-activated CD8+ T cells, we demonstrate that use of dual MERTK/FLT3 inhibitor UNC2025 restricts CD8+ T proliferation at the G2 phase, at least in part by modulation of mTOR signaling. Cytokine production and activation remain largely unaffected. Finally, we show that activated CD8+ T cells express FLT3 from day two post activation, and FLT3 inhibition with AC220 (quizartinib) or siRNA-mediated knockdown affects cell cycle kinetics. These results signify that caution is needed when using potent RTKIs in the context of antitumor immune responses.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii312-iii312
Author(s):  
Timothy Ritzmann ◽  
Anbarasu Lourdusamy ◽  
Andrew Jackson ◽  
Lisa Storer ◽  
Andrew Donson ◽  
...  

Abstract Ependymoma is the third commonest childhood brain tumour. Relapse is frequent, often fatal and current therapeutic strategies are inadequate. Previous ependymoma research describes an immunosuppressive environment with T-cell exhaustion, indicating a lack of response to T-cell directed immunotherapy. Understanding the immune microenvironment is therefore critical. We present a computational analysis of ependymoma, gene expression derived, immune profiles. Using 465 ependymoma samples from gene expression datasets (GSE64415, GSE50385, GSE100240) and two RNA-seq databases from UK ependymomas, we applied bulk tumour deconvolution methods (CIBERSORT and xCell) to infer immune cell populations. Additionally, we measured checkpoint blockade related mRNAs and used immunohistochemistry to investigate cell populations in ependymoma sections. CIBERSORT indicated high proportions of M2-like macrophages and smaller proportions of activated natural killer (NK) cells, T follicular helper cells, CD4+ memory T-cells and B-cells. xCell overlapped with the M2-like macrophage and CD4+ memory T-cell signatures seen in CIBERSORT. On immunohistochemistry, T and B cells were scarce, with small numbers of CD8+, CD4+ and CD20+ cells in the parenchyma but greater numbers in surrounding regions. CD68 was more highly expressed in the parenchyma. Analysis of nine checkpoint ligands and receptors demonstrated only the TIM3/GAL9 combination was reliably detectable. GAL9 is implicated in tumour interactions with T-cells and macrophages elsewhere, possibly contributing to poorer outcomes. Our study supports the presence of myeloid cells being leading contributors to the ependymoma immune microenvironment. Further work will delineate the extent of myeloid contribution to immunosuppression across molecular subtypes. Modulation of tumour immunity may contribute to better clinical outcomes.


2021 ◽  
Author(s):  
Takanori Sasaki ◽  
Sabrina Bracero ◽  
Joshua Keegan ◽  
Lin Chen ◽  
Ye Cao ◽  
...  

Objective: To investigate the immune cell profiling and their longitudinal changes in systemic lupus erythematosus (SLE). Methods: We employed mass cytometry with three different 38-39 marker panels (Immunophenotyping, T cell/monocyte, and B cell) in cryopreserved peripheral blood mononuclear cells (PBMCs) from nine patients with early SLE, 15 patients with established SLE, and 14 non-inflammatory controls. We used machine learning-driven clustering, FlowSOM (Flow Self-Organizing Maps) and dimensional reduction with tSNE (t-distributed Stochastic Neighbor Embedding) to identify unique cell populations in early and established SLE. For the nine early SLE patients, longitudinal mass cytometry analysis was applied to PBMCs at three time points (at enrollment, six months post-enrollment, and one year post-enrollment). Serum samples were also assayed for 65 cytokines by Luminex multiplex assay, and associations between cell types and cytokines/chemokines assessed. Results: T peripheral helper cells (Tph cells), T follicular helper cells (Tfh cells) and several Ki67+ proliferating subsets (ICOS+ Ki67+ CD8 T cells, Ki67+ regulatory T cells, CD19int Ki67hi plasmablasts, and Ki67hi PU.1hi monocytes) were increased in early SLE. Longitudinal mass cytometry and multiplex serum cytokine assays of samples from early SLE patients revealed that Tfh cells and CXCL10 decreased at one year post-enrollment. CXCL13 correlated positively with several of the expanded cell populations in early SLE. Conclusions: Two major helper T cell subsets and unique Ki67+ proliferating immune cell subsets were expanded in the early phase of SLE, and the immunologic features characteristic of early SLE evolved over time.


Sign in / Sign up

Export Citation Format

Share Document