Systematic Screening for Preschool Behavioral Disorders

1993 ◽  
Vol 18 (3) ◽  
pp. 177-188 ◽  
Author(s):  
Esther Sinclair ◽  
Melissa Del'homme ◽  
Maribel Gonzalez

Research in the area of behavioral disorders suggests chronic problems in the underreferral and underrepresentation of at-risk children. Systematic preschool screening procedures for identifying such students are conspicuous by their absence in both the professional literature and actual practice. The present study adapted the elementary version of Systematic Screening for Behavior Disorders (SSBD) to a select preschool Head Start population. Primary modifications of the SSBD were made in the decision rules determining which children pass through the multiple gated system to the next stage. A secondary modification was the elimination of Stage III observation of Academic Engaged Time (AET) because of its developmental inappropriateness for preschoolers. Of the Stage II subjects, 58% passed into Stage III peer social behavior observations and 5% of the Stage III sample was referred to child study teams for further assessment. Implications for further research with this population, utilizing large-scale field testing and validation procedures, are presented and discussed.

1988 ◽  
Vol 13 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Judith K. Grosenick ◽  
Nancy L. George ◽  
Michael P. George

This article addresses the value of program descriptions for the field of serious emotional disturbance/behavioral disorders and presents data collected on the availability of written programs for this population of students. The development and field testing of instrumentation used to collect these and other data on the characteristics of district-wide programs for seriously emotionally disturbed children and youth are described. The availability of program descriptions was assessed in eight areas: philosophy, student needs and identification procedures, student and program goals, instructional methods and curriculum, community involvement, program design and operation, exit procedures, and evaluation. Findings indicated that relatively few comprehensive program descriptions are available to program planners and developers in the field of behavioral disorders, leading to a conclusion similar to one drawn by other writers with regard to the availability of program descriptions in the professional literature — while many high quality programs are likely to exist in the field they have not been adequately described on paper.


1969 ◽  
Vol 9 (04) ◽  
pp. 403-411 ◽  
Author(s):  
B.K. Sinha ◽  
Harvey T. Kennedy

Abstract Recommendations are made for obtaining consistent and reproducible test data on drilling fluids having identical composition. Previously, such a procedure has been difficult to accomplish even when the fluids were mixed in similar equipment. A survey of work in this area indicates that previous methods have been unsatisfactory because previous methods have been unsatisfactory because (1) the muds are extremely sensitive to the duration and violence of agitation during a normal mixing routine, and (2) gelling of the muds occurs before the properties can reach constant values. This gelling is caused by water evaporation resulting from the increase in temperature associated with the agitation. The work shows that these problems largely can be overcome by (1) agitating the constituents of the drilling fluid more vigorously, (2) maintaining a fairly constant temperature, and(3) Protecting the fluid from evaporation. When these steps are followed, the fluid properties approach asymptotic values that do not change by prolonged or accelerated agitation or by aging for a month. The time required to reach asymptotic values or a stabilized state is from 2 to 6 hours and is a function of the mud composition. Introduction Preparation of drilling fluids in the laboratory to determine their suitability to meet specific drilling requirements or to serve as a base fluid to evaluate the effectiveness of thinners, dispersants or other additives normally begins with combining measured quantities of the constituents and stirring them for a short time in a low-speed mixer. This is done to obtain a uniform mixture and to hydrate clays. Then the fluid is further agitated in a higher-speed device (Hamilton Beach mixer or Waring blender) to disperse more thoroughly and clay particles The biggest obstacle in the laboratory investigation of drilling fluids has been the lack of a method of producing a mixture by which reproducible results of the measured properties could be obtained. Numerous investigators have encountered this difficulty. Prior to 1929, density was the only property of mud that customarily was measured. The use of Wyoming bentonite on a large scale after 1929 was mainly responsible for the development of more elaborate testing procedures and for the application of the principles of colloid chemistry to the drilling fluids. Ambrose and Loomis in 1931 were among the first to recognize the plastic flow characteristics of drilling fluids, although Bingham in 1916 had observed The same phenomenon with dilute clay suspensions. Marsh introduced the Marsh funnel for field testing in 1931. By this time, non-Newtonian characteristics of drilling fluids were established. The Stormer and MacMichael viscometers were used to study the rheological properties of the fluids. In the 1930's and early 1940's, the work conducted by several investigators contributed toward a better understanding of drilling fluids. In the mid 1930's, fluid-loss and the associated mud-cake-forming properties of drilling fluids were recognized as important to the behavior of these fluids. The other properties of drilling fluids, including gel strength, pH, and sand content soon were recognized. In 1937, API published its first recommended procedure for test methods. Since that time, these procedures have been revised periodically. The latest edition, RP-13B, was published in 1961 However, in spite of the recognized need for a method of mixing that provides drilling fluids with stabilized properties, no such method previously has been described. SPEJ P. 403


2018 ◽  
Vol 8 (10) ◽  
pp. 1914 ◽  
Author(s):  
Lincheng Jiang ◽  
Yumei Jing ◽  
Shengze Hu ◽  
Bin Ge ◽  
Weidong Xiao

Identifying node importance in complex networks is of great significance to improve the network damage resistance and robustness. In the era of big data, the size of the network is huge and the network structure tends to change dynamically over time. Due to the high complexity, the algorithm based on the global information of the network is not suitable for the analysis of large-scale networks. Taking into account the bridging feature of nodes in the local network, this paper proposes a simple and efficient ranking algorithm to identify node importance in complex networks. In the algorithm, if there are more numbers of node pairs whose shortest paths pass through the target node and there are less numbers of shortest paths in its neighborhood, the bridging function of the node between its neighborhood nodes is more obvious, and its ranking score is also higher. The algorithm takes only local information of the target nodes, thereby greatly improving the efficiency of the algorithm. Experiments performed on real and synthetic networks show that the proposed algorithm is more effective than benchmark algorithms on the evaluation criteria of the maximum connectivity coefficient and the decline rate of network efficiency, no matter in the static or dynamic attack manner. Especially in the initial stage of attack, the advantage is more obvious, which makes the proposed algorithm applicable in the background of limited network attack cost.


2021 ◽  
Vol 6 ◽  
pp. 8
Author(s):  
Amale Laaroussi ◽  
Abdelghrani Bouayad ◽  
Zakaria Lissaneddine ◽  
Lalla Amina Alaoui

Morocco is one of the countries investing more and more in Renewable Energy (RE) technologies to meet the growing demand for energy and ensure the security of supply in this sector. The number of solar projects planned and implemented, as well as solar thermal projects in the form of Concentrating Solar Power (CSP) installations is steadily increasing. Many of these installations are designed as large utility systems. In order to provide strong evidence on local, regional and even national impacts, this article examines the impacts of large-scale renewable energy projects on territorial development, based on a case study of the NOOR 1 (Concentrated Solar Power (CSP)) project in Ouarzazate, Morocco. The data collected during this study, conducted through semi-structured interviews with experts, stakeholders, local community representatives and combined with an analysis of documents provided by the NOOR 1 project managers, investors and consulting firms specialized in the field of Renewable Energy, provide detailed evidence on the type and magnitude of impacts on the economic development of the Moroccan southern region where the NOOR 1 plant is located. The data collected is analyzed using NVIVO software. The study results in a consolidated list of many impacts with varying levels of significance for different stakeholder groups, including farmers, youth, women, community representatives and small and medium firms owners. It should be noted that the importance of analyzing the economic impact of large infrastructure projects is widely recognized, but so far, there is little published in the academic and professional literature on the potential impacts of these projects at the local level. Even less information is available on the local impacts of large-scale project implementation in Morocco. While many macroeconomic studies have fed the recent surge in investment in RE projects with the promise of multiple social, economic, environmental, and even geopolitical benefits at the macro level, public debates and discussions have raised considerable doubts. The question of whether these promises would also leave their marks at the local level has also arisen. Despite these uncertainties, very few academics and practitioners have conducted research to empirically develop a good understanding of the impact of RE projects at the local level. To fill this research gap, the economic impact analysis of NOOR 1 provides a detailed empirical overview, which allows a better understanding of the effects that the infrastructure developments of Concentrated Solar Power (CSP) plants can have on the economic environment in which they are located.


2021 ◽  
Vol 11 ◽  
Author(s):  
Young Dong Yu ◽  
Young Hwii Ko ◽  
Jong Wook Kim ◽  
Seung Il Jung ◽  
Seok Ho Kang ◽  
...  

AimThis study evaluated the prognosis and survival predictors for bladder urachal carcinoma (UC), based on large scale multicenter cohort with long term follow-up database.MethodsA total 203 patients with bladder UC treated at 19 hospitals were enrolled. Clinical parameters on carcinoma presentation, diagnosis, and therapeutic methods were reviewed for the primary cancer and for all subsequent recurrences. The stage of UC was stratified by Mayo and Sheldon pathological staging system. Oncological outcomes and the possible clinicopathological parameters associated with survival outcomes were investigated.ResultsThe mean age of the patients was 54.2 years. Among the total of 203 patients, stages I, II, III, and IV (Mayo stage) were 48 (23.8%), 108 (53.5%), 23 (11.4%), and 23 (11.4%), respectively. Gross hematuria and bladder irritation symptoms were the two most common initial symptoms. The mean follow-up period was 65 months, and 5-year overall survival rates (OS), cancer-specific survival rates (CSS), and recurrence-free survival rates (RFS) were 88.3, 83.1, and 63.9%, respectively. For the patients with Mayo stage ≥III, OS, CSS, and RFS were significantly decreased to 38.0, 35.2, and 28.4%, respectively. The higher pathological stage (Mayo stage ≥III, Sheldon stage ≥IIIc), positive surgical margin (PSM), and positive lymphovascular invasion (PLM) were independent predictors of shorter OS, CSS, and RFS.ConclusionThe pathological stage, PSM, and PLM were significantly associated with the survival of UC patients, emphasizing an importance of the complete surgical resection of tumor lesion.


2015 ◽  
Author(s):  
Elizabeth Hobson ◽  
Simon DeDeo

Dominance hierarchies are group-level properties that emerge from the aggressions of individuals. Although individuals can gain critical benefits from their position in a hierarchy, we do not understand how real-world hierarchies form, or what signals and decision-rules individuals use to construct and maintain them in the absence of simple cues. A study of aggression in two groups of captive monk parakeets (Myiopsitta monachus) found a transition to large-scale ordered aggression occurred in newly-formed groups after one week, with individuals thereafter preferring to direct aggression against those nearby in rank. We describe two mechanisms by which individuals may determine rank order: inference based on overall levels of aggression, or on subsets of the aggression network. Both pathways were predictive of individual decisions to aggress. Based on these results, we present a new theory, of a feedback loop between knowledge of rank and consequent behavior, that explains the transition to strategic aggression, and the formation and persistence of dominance hierarchies in groups capable of both social memory and social inference.


Author(s):  
Natalie W. Breakfield ◽  
Dayna Collett ◽  
Michael E. Frodyma

Plant growth-promoting microbes can affect the plant microbiome, improving different properties of the plant such as yield and health. Many companies are commercializing these microbes as products called biologicals. Defining the product concept is one of the first and most important steps in making a biological product. Companies can use phenotyping and genotyping approaches to identify the microbe to make into a live bacterial product. Screening usually begins in the laboratory and often moves from high-throughput methods to more time and resource-intensive methods culminating in large scale field testing. Once the microbe is chosen, the fermentation process grows the bacteria to the necessary amounts, while the formulation process ensures a stable product in the desired form such as a liquid or powder. The products must show yield increases in the field over several seasons and conditions, but also must be easy to use and cost-effective to be adopted by farmers and other customers. Tying all these data together from the selection process to test results gives a customer a ‘reason to believe’ for the marketing and launch of a successful product.


2020 ◽  
Vol 57 (6) ◽  
pp. 828-839 ◽  
Author(s):  
Keshab Sharma ◽  
Lijun Deng

This paper presents a field test program of a large-scale soil–footing-structure system designed with a rocking foundation in a cohesive soil to examine the behaviour of the system and to provide case histories for possible performance-based seismic design of foundations. The rocking system was subjected to slow cyclic loadings at various drift ratios up to 7%. Twenty-four tests were conducted for foundations with varying initial factors of safety against the bearing failure, loading directions, rotation amplitudes, and embedment. A geotechnical investigation was carried out to determine soil properties before and after the experiments. The system performance indices, such as damping, stiffness, settlement, and re-centering capability, were quantified and compared with the published literature. Field test results showed that the strength and unit weight of soils at footing edges were increased due to rocking, for the present cohesive soil. The rocking moment capacity increased slightly with the increasing soil strength. An empirical equation for the secant stiffness was developed. The rocking system on the cohesive soil exhibited superior performance in terms of small residual settlement and large re-centering capability. Footing’s mechanical response was quantified using strain gauge readings. The footing remained elastic in tension; the transient soil–footing contact areas were estimated with strain gauges, and they agreed very well with the measured or calculated contact areas.


Author(s):  
Denis Shestakov

Finding information on the Web using a web search engine is one of the primary activities of today’s web users. For a majority of users results returned by conventional search engines are an essentially complete set of links to all pages on the Web relevant to their queries. However, currentday searchers do not crawl and index a significant portion of the Web and, hence, web users relying on search engines only are unable to discover and access a large amount of information from the nonindexable part of the Web. Specifically, dynamic pages generated based on parameters provided by a user via web search forms are not indexed by search engines and cannot be found in searchers’ results. Such search interfaces provide web users with an online access to myriads of databases on the Web. In order to obtain some information from a web database of interest, a user issues his/her query by specifying query terms in a search form and receives the query results, a set of dynamic pages which embed required information from a database. At the same time, issuing a query via an arbitrary search interface is an extremely complex task for any kind of automatic agents including web crawlers, which, at least up to the present day, do not even attempt to pass through web forms on a large scale.


1973 ◽  
Vol 11 (3) ◽  
pp. 187-195 ◽  
Author(s):  
Irwin Hyman ◽  
Richard Carroll ◽  
James Duffey ◽  
John Manni ◽  
David Winikur

Sign in / Sign up

Export Citation Format

Share Document