Assessment of cerebral low-frequency oscillations in patients with retinal vein occlusion: a preliminary functional MRI study

2019 ◽  
Vol 61 (6) ◽  
pp. 813-820 ◽  
Author(s):  
Qing Gao ◽  
Bin Peng ◽  
Xin Huang ◽  
Chen-Xing Qi ◽  
Yan Tong ◽  
...  

Background There is increasing evidence that patients with retinal vein occlusion exhibit cerebral vascular changes and are at an increased risk of stroke. However, it remains unknown whether patients with retinal vein occlusion exhibit changes in intrinsic brain activity. Purpose This study investigated intrinsic brain activity changes in patients with retinal vein occlusion by assessing the amplitude of low-frequency fluctuations. Material and Methods Forty-five patients with retinal vein occlusion (22 men, 23 women, mean age 56.55 ± 6.97 years) and 43 healthy controls (13 men, 30 women; mean age 53.53 ± 8.19 years) closely matched in age, sex, and education level underwent resting-state MRI scans. The amplitude of low-frequency fluctuation method was used to compare intrinsic brain activity between the two groups. Results Compared with healthy controls, patients with retinal vein occlusion exhibited significantly lower amplitude of low-frequency fluctuation values in the left middle occipital gyrus, right middle occipital gyrus, and right calcarine. However, patients with retinal vein occlusion showed significantly higher amplitude of low-frequency fluctuations in the bilateral cerebellum 6, right hippocampus, left insula, and left fusiform (voxel-level P < 0.01, Gaussian random field correction, cluster-level P < 0.05). Conclusion Our results demonstrated that patients with retinal vein occlusion showed abnormal spontaneous neural activities in the visual cortices, cerebellum, and Papez circuit, which might indicate impaired vision, cognition, and emotional function in patients with retinal vein occlusion. These findings offer important insights into the neural mechanism of retinal vein occlusion.

2019 ◽  
Vol 61 (4) ◽  
pp. 496-507 ◽  
Author(s):  
Yi Cheng ◽  
Xin Huang ◽  
Yu-Xiang Hu ◽  
Mu-Hua Huang ◽  
Bo Yang ◽  
...  

Background Previous neuroimaging studies demonstrated that individuals with high myopia are associated with abnormalities in anatomy of the brain. Purpose The purpose of this study was to explore alterations in the intrinsic brain activity by studying the amplitude of low-frequency fluctuations. Material and Methods A total of 64 myopia individuals (41 with high myopia with a refractive error <–600 diopter [D], 23 with low/moderate myopia with a refractive error between –100 and –600 D, and similarly 59 healthy controls with emmetropia closely matched for age) were recruited. The amplitude of low-frequency fluctuations method was conducted to investigate the difference of intrinsic brain activity across three groups. Results Compared with the healthy controls, individuals with low/moderate myopia showed significantly decreased amplitude of low-frequency fluctuation values in the bilateral rectal gyrus, right cerebellum anterior lobe/calcarine, and bilateral thalamus and showed significantly increased amplitude of low-frequency fluctuation values in left white matter (optic radiation), right prefrontal cortex, and left primary motor cortex (M1)/primary somatosensory cortex (S1). In addition, individuals with high myopia showed significantly decreased amplitude of low-frequency fluctuation values in the right cerebellum anterior lobe/calcarine/bilateral parahippocampal gyrus, bilateral posterior cingulate cortex, and bilateral middle cingulate cortex and significantly increased amplitude of low-frequency fluctuation values in left white matter (optic radiation), bilateral frontal parietal cortex, and left M1/S1. Moreover, we found that the amplitude of low-frequency fluctuation values of the different brain areas was closely related to the clinical features in the high myopia group. Conclusion Our results demonstrated that individuals with low/moderate myopia and high myopia had abnormal intrinsic brain activities in various brain regions related to the limbic system, default mode network, and thalamo-occipital pathway.


2021 ◽  
Vol 18 (12) ◽  
pp. 1205-1212
Author(s):  
Yingchan Wang ◽  
Yuchao Jiang ◽  
Dengtang Liu ◽  
Jianye Zhang ◽  
Dezhong Yao ◽  
...  

Objective Abnormalities of static brain activity have been reported in schizophrenia, but it remains to be clarified the temporal variability of intrinsic brain activities in schizophrenia and how atypical antipsychotics affect it.Methods We employed a resting-state functional magnetic resonance imaging (rs-fMRI) and a sliding-window analysis of dynamic amplitude of low-frequency fluctuation (dALFF) to evaluate the dynamic brain activities in schizophrenia (SZ) patients before and after 8-week antipsychotic treatment. Twenty-six schizophrenia individuals and 26 matched healthy controls (HC) were included in this study.Results Compared with HC, SZ showed stronger dALFF in the right inferior temporal gyrus (ITG.R) at baseline. After medication, the SZ group exhibited reduced dALFF in the right middle occipital gyrus (MOG.R) and increased dALFF in the left superior frontal gyrus (SFG.L), right middle frontal gyrus (MFG.R), and right inferior parietal lobule (IPL.R). Dynamic ALFF in IPL.R was found to significant negative correlate with the Scale for the Assessment of Negative Symptoms (SANS) scores at baseline.Conclusion Our results showed dynamic intrinsic brain activities altered in schizophrenia after short term antipsychotic treatment. The findings of this study support and expand the application of dALFF method in the study of the pathological mechanism in psychosis in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Huang ◽  
Zhi Wen ◽  
Chen-Xing Qi ◽  
Yan Tong ◽  
Yin Shen

Background: Growing evidence demonstrate that diabetic retinopathy (DR) patients have a high risk of cognitive decline and exhibit abnormal brain activity. However, neuroimaging studies thus far have focused on static cerebral activity changes in DR patients. The characteristics of dynamic cerebral activity in patients with DR are poorly understood.Purpose: The purpose of the study was to investigate the dynamic cerebral activity changes in patients with DR using the dynamic amplitude of low-frequency fluctuation (dALFF) method.Materials and methods: Thirty-four DR patients (18 men and 16 women) and 38 healthy controls (HCs) (18 males and 20 females) closely matched in age, sex, and education were enrolled in this study. The dALFF method was used to investigate dynamic intrinsic brain activity differences between the DR and HC groups.Results: Compared with HCs, DR patients exhibited increased dALFF variability in the right brainstem, left cerebellum_8, left cerebellum_9, and left parahippocampal gyrus. In contrast, DR patients exhibited decreased dALFF variability in the left middle occipital gyrus and right middle occipital gyrus.Conclusion: Our study highlighted that DR patients showed abnormal variability of dALFF in the visual cortices, cerebellum, and parahippocampal gyrus. These findings suggest impaired visual and motor and memory function in DR individuals. Thus, abnormal dynamic spontaneous brain activity might be involved in the pathophysiology of DR.


2021 ◽  
Vol 14 (11) ◽  
pp. 1741-1747
Author(s):  
Wen-Jia Dong ◽  
◽  
Chu-Qi Li ◽  
Yong-Qiang Shu ◽  
Wen-Qing Shi ◽  
...  

AIM: To explore the intrinsic brain activity variations in retinal vein occlusion (RVO) subjects by using the voxel-wise degree centrality (DC) technique. METHODS: Twenty-one subjects with RVO and twenty-one healthy controls (HCs) were enlisted and underwent the resting-state functional magnetic resonance imaging (rs-fMRI) examination. The spontaneous cerebrum activity variations were inspected using the DC technology. The receiver operating characteristic (ROC) curve was implemented to distinguish the DC values of RVOs from HCs. The relationships between DC signal of definite regions of interest and the clinical characteristics in RVO group were evaluated by Pearson’s correlation analysis. RESULTS: RVOs showed notably higher DC signals in right superior parietal lobule, middle frontal gyrus and left precuneus, but decreased DC signals in left middle temporal gyrus and bilateral anterior cingulated (BAC) when comparing with HCs. The mean DC value of RVOs in the BAC were negatively correlated with the anxiety and depression scale. CONCLUSION: RVO is associated aberrant intrinsic brain activity patterns in several brain areas including pain-related as well as visual-related regions, which might assist to reveal the latent neural mechanisms.


2014 ◽  
Vol 40 (2) ◽  
pp. 387-397 ◽  
Author(s):  
Xuena Liu ◽  
Siqi Wang ◽  
Xinqing Zhang ◽  
Zhiqun Wang ◽  
Xiaojie Tian ◽  
...  

2021 ◽  
Author(s):  
Toshiharu Kamishikiryo ◽  
Go Okada ◽  
Eri Itai ◽  
Yoshikazu Masuda ◽  
Satoshi Yokoyama ◽  
...  

Abstract To establish treatment response biomarkers that reflect the pathophysiology of depression, it is important to use an integrated set of features that are promising as biomarkers. This study aimed to determine the relationship between blood metabolites related to treatment response to escitalopram and regional brain activity at rest and to find the characteristics of depression that respond to treatment. Blood metabolite levels and resting brain activity were measured in patients with depression (N = 65) before and after 6 weeks treatment with escitalopram and healthy controls (N = 36). Thirty-two patients (49.2%) showed clinical response (>50% reduction in Hamilton Rating Scale for Depression score) and were classified as Responders, and the remaining 33 patients were classified as Nonresponders. Pretreatment plasma kynurenine level and fractional amplitude of low-frequency fluctuations (fALFF) of the left dorsolateral prefrontal cortex (DLPFC) were lower in Responders, and their elevations after treatment were correlated with improvement in symptoms. Moreover, fALFF of the left DLPFC was significantly correlated with plasma kynurenine level in pretreatment patients with depression and healthy controls. Decreased kynurenine level and resting-state regional brain activity of the left DLPFC may be involved in the pathophysiology of depression in response to escitalopram treatment.


Sign in / Sign up

Export Citation Format

Share Document