scholarly journals Anomalous Development of the Spinal Cord in a Calf

1979 ◽  
Vol 16 (1) ◽  
pp. 49-59 ◽  
Author(s):  
R. Bradley ◽  
F. D. Kirby

A full term Friesian bull calf was born unable to stand. The dam had no signs of illness during pregnancy. In the thoracic spinal cord there was anomalous development of the central canal and a dorsally placed fusiform and longitudinal dilatation. Mild inflammatory lesions were seen in some body organs and central nervous system where they were suggestive of viral infection. Several skeletal muscles had an extended range of muscle cell cross sectional areas and some cells had numerous internal nuclei.

1991 ◽  
Vol 75 (6) ◽  
pp. 911-915 ◽  
Author(s):  
Thomas H. Milhorat ◽  
David E. Adler ◽  
Ian M. Heger ◽  
John I. Miller ◽  
Joanna R. Hollenberg-Sher

✓ The pathology of hematomyelia was examined in 35 rats following the stereotactic injection of 2 µl blood into the dorsal columns of the thoracic spinal cord. This experimental model produced a small ball-hemorrhage without associated neurological deficits or significant tissue injury. Histological sections of the whole spinal cord were studied at intervals ranging from 2 hours to 4 months after injection. In acute experiments (2 to 6 hours postinjection), blood was sometimes seen within the lumen of the central canal extending rostrally to the level of the fourth ventricle. Between 24 hours and 3 days, the parenchymal hematoma became consolidated and there was an intense proliferation of microglial cells at the perimeter of the lesion. The cells invaded the hematoma, infiltrated its core, and removed erythrocytes by phagocytosis. Rostral to the lesion, the lumen of the central canal was found to contain varying amounts of fibrin, proteinaceous material, and cellular debris for up to 15 days. These findings were much less prominent in the segments of the canal caudal to the lesion. Healing of the parenchymal hematoma was usually complete within 4 to 6 weeks except for residual hemosiderin-laden microglial cells and focal gliosis at the lesion site. It is concluded that the clearance of atraumatic hematomyelia probably involves two primary mechanisms: 1) phagocytosis of the focal hemorrhage by microglial cells; and 2) drainage of blood products in a rostral direction through the central canal of the spinal cord.


2020 ◽  
Author(s):  
Yunge Jia ◽  
Yinhua Li ◽  
Wei Hou ◽  
Fuhong Li ◽  
Haoran Sun ◽  
...  

ABSTRACTThe spinal cord is a cylinder structure in the vertebra and thought a simplified with the gray matter and white matter. Rexed lamination for the gray matter and regional sub-division for whiter matter are completely termed to date. Anterior commissure locates between the central canal and the anterior median fissure. However, some experimental data may still confront with new confined anatomical interpretation. By using NADPH diaphorase [N-d] enzyme histology, we found a vertical oriented neuronal pathway between the central canal and the anterior median fissure in the sacral spinal cord of young adult and aged dog. We used a term “supra fissure area” [SFA] to illustrate the region which consisted of the gray commissure and anterior white commissure. The N-d pathway was notably observable in aged animals. The vertical neurites revealed the cerebrospinal fluid [CSF] contacting neurites between the anterior median fissure and the central canal. We further examined the monkey, rat and pigeon in the region for better understanding of the structure and potential function. The neurodegeneration of N-d dystrophy was detected in the [SFA] in the thoracic spinal cord of the aged monkey. N-d positive fibers were detected in anterior fissure of the rat spinal cord. N-d fibrous structures were also detected in the pigeon spinal cord. These results suggested a new pathway of CSF contacting neurons and the neuronal communications about the central canal.


2021 ◽  
Author(s):  
Michael P. Trevarrow ◽  
Anna Reelfs ◽  
Sarah E. Baker ◽  
Rashelle M. Hoffman ◽  
Tony W. Wilson ◽  
...  

Abstract Previous animal models have illustrated that reduced cortical activity in the developing brain has cascading activity-dependent effects on the microstructural organization of the spinal cord. A limited number of studies have attempted to translate these findings to humans with cerebral palsy (CP). Essentially, the aberrations in sensorimotor cortical activity in those with CP could have an adverse effect on the spinal cord microstructure. To investigate this knowledge gap, we utilized magnetoencephalographic (MEG) brain imaging to quantify motor-related oscillatory activity in fourteen adults with CP and sixteen healthy controls. Participants also underwent cervical-thoracic spinal cord MRI. Our results showed that the strength of the peri-movement beta desynchronization and the post-movement beta rebound were each weaker in the adults with CP relative to the controls, and these weakened responses were associated with poorer task performance. Additionally, our results showed that the strength of the peri-movement beta response was associated with the total cross-sectional area of the spinal cord and the white matter cross-sectional area. Altogether these results suggest that the altered sensorimotor cortical activity seen in CP may result in activity-dependent plastic changes within the spinal cord microstructure, which could ultimately contribute to the sensorimotor deficits seen in this population.


2011 ◽  
Vol 139 (9-10) ◽  
pp. 657-660 ◽  
Author(s):  
Dejan Savic ◽  
Slobodan Vojinovic ◽  
Mirjana Spasic ◽  
Zoran Peric ◽  
Stevo Lukic

Introduction. Syringomyelia is a cavitary extension inside the spinal cord which can be either symptomatic or congenitally-idiopathic. Syringomyelia during the course of the disease in patients presenting with clinically definite multiple sclerosis was described earlier. Syringomyelia in patients presenting with a clinically isolated syndrome suggestive of multiple sclerosis is unusual. Case Outline. We present two patients presenting with demy-elinating disease of the central nervous system with syringomyelia in the cervical and thoracic spinal cord. We did not find classical clinical signs of syringomyelia in our patients, but we disclosed syringomyelia incidentally during magnetic resonance exploration. Magnetic resonance exploration using the gadolinium contrast revealed the signs of active demyelinating lesions in the spinal cord in one patient but not in the other. Conclusion. Syringomyelia in demyelinating disease of the central nervous system opens the question whether it is a coincidental finding or a part of clinical features of the disease. Differentiation of the significance of syringomyelia finding in these patients plays a role in the choice of treatment concept in such patients.


2018 ◽  
Vol 56 (1) ◽  
pp. 106-117 ◽  
Author(s):  
Jeann Leal de Araujo ◽  
Aline Rodrigues-Hoffmann ◽  
Paula R. Giaretta ◽  
Jianhua Guo ◽  
Jill Heatley ◽  
...  

Neurotropism is a striking characteristic of bornaviruses, including parrot bornavirus 2 (PaBV-2). Our study evaluated the distribution of inflammatory foci and viral nucleoprotein (N) antigen in the brain and spinal cord of 27 cockatiels ( Nymphicus hollandicus) following experimental infection with PaBV-2 by injection into the pectoral muscle. Tissue samples were taken at 12 timepoints between 5 and 114 days post-inoculation (dpi). Each experimental group had approximately 3 cockatiels per group and usually 1 negative control. Immunolabeling was first observed within the ventral horns of the thoracic spinal cord at 20 dpi and in the brain (thalamic nuclei and hindbrain) at 25 dpi. Both inflammation and viral antigen were restricted to the central core of the brain until 40 dpi. The virus then spread quickly at 60 dpi to both gray and white matter of all analyzed sections of the central nervous system (CNS). Encephalitis was most severe in the thalamus and hindbrain, while myelitis was most prominent in the gray matter and equally distributed in the cervical, thoracic, and lumbosacral spinal cord. Our results demonstrate a caudal to rostral spread of virus in the CNS following experimental inoculation of PABV-2 into the pectoral muscle, with the presence of viral antigen and inflammatory lesions first in the spinal cord and progressing to the brain.


1993 ◽  
Vol 51 (3) ◽  
pp. 329-332 ◽  
Author(s):  
Aílton Melo ◽  
Luciana Moura ◽  
Solana Rios ◽  
Marcos Machado ◽  
Gersonita Costa

Magnetic resonance imaging of the brain and spinal cord were carried out for seventeen consecutive patients with HTLV-1 associated myelopathy (HAM). Eight patients had brain abnormalities and four had decreased thoracic spinal cord diameter. Brain lesions were mostly located in subcortical and periventricular areas. Our data suggest that diffuse central nervous system lesions are present in patients with HAM.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Gregory Helsen ◽  
Stefaan J. Vandecasteele ◽  
Ludo J. Vanopdenbosch

We describe a farmer who presented with a clinical picture of a transverse thoracic myelitis. MRI showed inflammatory lesions in brain and thoracic spinal cord. Toxocariasis was suspected because of eosinophilia in blood and cerebrospinal fluid, and this diagnosis was confirmed immunologically. He was successfully treated with antihelminthics in combination with corticosteroids. Neurotoxocariasis is rare and diagnosis can be difficult because of the different and atypical clinical manifestations. It should be considered in every case of central neurological syndrome associated with eosinophilia.


2015 ◽  
Vol 14 (4) ◽  
pp. 555-562 ◽  
Author(s):  
Valentina V. Porseva ◽  
Valentin V. Shilkin ◽  
Igor B. Krasnov ◽  
Petr M. Masliukov

AbstractThe aim of the work was to analyse changes in the location and morphological characteristics of calbindin (CB)-immunoreactive (IR) neurons of the thoracic spinal cord of C57BL/6N male mice after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). Space flight induced multidirectional changes of the number and morphological parameters of CB-positive neurons. The number of IR neurons increased in laminae I (from 10 to 17 neurons per section), II (from 42 to 67 cells per section) and IX (from two neurons per segment to two neurons per section), but CB disappeared in neurons of lamina VIII. Weightlessness did not affect the number of CB-IR neurons in laminae III–V and VII, including preganglionic sympathetic neurons. The cross-sectional area of CB-IR neurons decreased in lamina II and VII (group of partition cells) and increased in laminae III–V and IX. After a space flight, few very large neurons with long dendrites appeared in lamina IV. The results obtained give evidence about substantial changes in the calcium buffer system and imbalance of different groups of CB-IR neurons due to reduction of afferent information under microgravity.


1979 ◽  
Vol 50 (2) ◽  
pp. 207-216 ◽  
Author(s):  
Howard J. Senter ◽  
Joan L. Venes ◽  
John S. Kauer

✓ Blood flow after severe experimental injury to the thoracic spinal cord was studied in cats, using a modification of the hydrogen clearance technique. Gamma hydroxybutyrate, a central nervous system depressant, was shown to markedly alter the ischemic response to injury if given during the early posttraumatic period. Other vasoactive drugs investigated had no effect on posttraumatic ischemia. Therapeutic intervention during the early posttraumatic period aimed at increasing blood flow while decreasing the metabolic requirements of the injured cord may prove of value in reversing or limiting some elements of long-tract dysfunction due to the secondary ischemic insult.


2019 ◽  
Vol 26 (11) ◽  
pp. 1402-1409 ◽  
Author(s):  
Emanuele Pravatà ◽  
Paola Valsasina ◽  
Claudio Gobbi ◽  
Chiara Zecca ◽  
Gianna C Riccitelli ◽  
...  

Background: Mechanisms associated with cervical spinal cord (CSC) and upper thoracic spinal cord (TSC) atrophy in multiple sclerosis (MS) are poorly understood. Objective: To assess the influence of brain, CSC and TSC T2-hyperintense lesions on cord atrophy and disability in MS. Methods: Thirty-four MS patients underwent 3T brain, cervical and thoracic cord magnetic resonance imaging (MRI) and Expanded Disability Status Scale (EDSS) score assessment. CSC/TSC lesion number and volume (LV), whole-brain and cortico-spinal tract (CST) LVs were obtained. Normalized whole CSC and upper TSC cross-sectional areas (CSAn) were also derived. Age- and sex-adjusted regression models assessed associations of brain/cord lesions with CSAn and EDSS and identified variables independently associated with CSAn and EDSS with a stepwise variable selection. Results: CSC CSAn (β = −0.36, p = 0.03) and TSC CSAn (β = −0.60, p < 0.001) were associated with CSC T2 LV. EDSS (median = 3.0) was correlated with CSC T2 LV (β = 0.42, p = 0.01), brain (β = 0.34, p = 0.04) and CST LV (β = 0.35, p = 0.03). The multivariate analysis retained CSC LV as significant predictor of CSC CSAn ( R2 = 0.20, p = 0.023) and TSC CSAn ( R2 = 0.51, p < 0.001) and retained CSC and CST LVs as significant predictors of EDSS ( R2 = 0.55, p = 0.001). Conclusions: CSC LV is an independent predictor of cord atrophy. When neurological impairment is relatively mild, central nervous system (CNS) lesion burden is a better correlate of disability than atrophy.


Sign in / Sign up

Export Citation Format

Share Document