Reading musical notation versus English letters: Mapping brain activation with MEG

2017 ◽  
Vol 47 (2) ◽  
pp. 255-269 ◽  
Author(s):  
Ching-I Lu ◽  
Margaret L. Greenwald ◽  
Yung-Yang Lin ◽  
Susan M. Bowyer

Temporal and spatial analyses of brain function with magnetoencephalography (MEG) are seldom reported in studies of musical sight-reading. We used MEG to compare the timing and localization of brain regions active during print-to-sound translation of musical notation versus English letters. MEG recordings were made on 22 professional musicians during print-to-sound tasks involving low versus high cognitive load. The MEG data were analyzed using MR-FOCUSS, a current density imaging technique. A laterality index was calculated to determine which hemisphere had more neural activation during these music and language reading tasks, and showed brain activation more lateralized to the language dominant (left) hemisphere in these right-handed musicians. Both note and letter reading tasks required translation to phonological codes and activated left hemisphere language areas. Also, the superior parietal cortex was a region of interest bilaterally. The high temporal resolution of MEG, coupled with its spatial resolution, proved sensitive to differences in cognitive load in reading both letters and musical notes. MEG will be useful in future studies of how brain structure or function may change as a result of learning music.

Healthcare ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 412
Author(s):  
Li Cong ◽  
Hideki Miyaguchi ◽  
Chinami Ishizuki

Evidence shows that second language (L2) learning affects cognitive function. Here in this work, we compared brain activation in native speakers of Mandarin (L1) who speak Japanese (L2) between and within two groups (high and low L2 ability) to determine the effect of L2 ability in L1 and L2 speaking tasks, and to map brain regions involved in both tasks. The brain activation during task performance was determined using prefrontal cortex blood flow as a proxy, measured by functional near-infrared spectroscopy (fNIRS). People with low L2 ability showed much more brain activation when speaking L2 than when speaking L1. People with high L2 ability showed high-level brain activation when speaking either L2 or L1. Almost the same high-level brain activation was observed in both ability groups when speaking L2. The high level of activation in people with high L2 ability when speaking either L2 or L1 suggested strong inhibition of the non-spoken language. A wider area of brain activation in people with low compared with high L2 ability when speaking L2 is considered to be attributed to the cognitive load involved in code-switching L1 to L2 with strong inhibition of L1 and the cognitive load involved in using L2.


2019 ◽  
Vol 19 (6) ◽  
pp. 1364-1378 ◽  
Author(s):  
Neeltje E. Blankenstein ◽  
Anna C. K. van Duijvenvoorde

Abstract Although many neuroimaging studies on adolescent risk taking have focused on brain activation during outcome valuation, less attention has been paid to the neural correlates of choice valuation. Subjective choice valuation may be particularly influenced by whether a choice presents risk (known probabilities) or ambiguity (unknown probabilities), which has rarely been studied in developmental samples. Therefore, we examined the neural tracking of subjective value during choice under risk and ambiguity in a large sample of adolescents (N = 188, 12–22 years). Specifically, we investigated which brain regions tracked subjective value coding under risk and ambiguity. A model-based approach to estimate individuals’ risk and ambiguity attitudes showed prominent variation in individuals’ aversions to risk and ambiguity. Furthermore, participants subjectively experienced the ambiguous options as being riskier than the risky options. Subjective value tracking under risk was coded by activation in ventral striatum and superior parietal cortex. Subjective value tracking under ambiguity was coded by dorsolateral prefrontal cortex (PFC) and superior temporal gyrus activation. Finally, overlapping activation in the dorsomedial PFC was observed for subjective value under both conditions. Overall, this is the first study to chart brain activation patterns for subjective choice valuation under risk and ambiguity in an adolescent sample, which shows that the building blocks for risk and ambiguity processing are already present in early adolescence. Finally, we highlight the potential of combining behavioral modeling with fMRI for investigating choice valuation in adolescence, which may ultimately aid in understanding who takes risks and why.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5540 ◽  
Author(s):  
Jessica-Lily Harvey ◽  
Lysia Demetriou ◽  
John McGonigle ◽  
Matthew B. Wall

Background Functional magnetic resonance imaging (fMRI) is a popular method for examining pharmacological effects on the brain; however, the BOLD response is dependent on intact neurovascular coupling, and potentially modulated by a number of physiological factors. Pharmacological fMRI is therefore vulnerable to confounding effects of pharmacological probes on general physiology or neurovascular coupling. Controlling for such non-specific effects in pharmacological fMRI studies is therefore an important consideration, and there is an additional need for well-validated fMRI task paradigms that could be used to control for such effects, or for general testing purposes. Methods We have developed two variants of a standardized control task that are short (5 minutes duration) simple (for both the subject and experimenter), widely applicable, and yield a number of readouts in a spatially diverse set of brain networks. The tasks consist of four functionally discrete three-second trial types (plus additional null trials) and contain visual, auditory, motor and cognitive (eye-movements, and working memory tasks in the two task variants) stimuli. Performance of the tasks was assessed in a group of 15 subjects scanned on two separate occasions, with test-retest reliability explicitly assessed using intra-class correlation coefficients. Results Both tasks produced robust patterns of brain activation in the expected brain regions, and region of interest-derived reliability coefficients for the tasks were generally high, with four out of eight task conditions rated as ‘excellent’ or ‘good’, and only one out of eight rated as ‘poor’. Median values in the voxel-wise reliability measures were also >0.7 for all task conditions, and therefore classed as ‘excellent’ or ‘good’. The spatial concordance between the most highly activated voxels and those with the highest reliability coefficients was greater for the sensory (auditory, visual) conditions than the other (motor, cognitive) conditions. Discussion Either of the two task variants would be suitable for use as a control task in future pharmacological fMRI studies or for any other investigation where a short, reliable, basic task paradigm is required. Stimulus code is available online for re-use by the scientific community.


2021 ◽  
Vol 15 ◽  
Author(s):  
Azam Meykadeh ◽  
Arsalan Golfam ◽  
Seyed Amir Hossein Batouli ◽  
Werner Sommer

Many bilingual individuals acquire their second language when entering primary school; however, very few studies have investigated morphosyntax processing in this population. Combining a whole-brain and region of interest (ROI)-based approach, we studied event-related fMRI during morphosyntactic processing, specifically person-number phi-features, in Turkish (L1) and Persian (L2) by highly proficient bilinguals who learned Persian at school entry. In a design with alternating language switching and pseudorandomized grammaticality conditions, two left-lateralized syntax-specific ROIs and 11 bilateral ROIs involved in executive functions (EF) were analyzed for the intensity of activation relative to a resting baseline. Our findings indicate a strong overlap of neural networks for L1 and L2, suggesting structural similarities of neuroanatomical organization. In all ROIs morphosyntactic processing invoked stronger activation in L1 than in L2. This may be a consequence of symmetrical switch costs in the alternating design used here, where the need for suppressing the non-required language is stronger for the dominant L1 when it is non-required as compared to the non-dominant L2, leading to a stronger rebound for L1 than L2 when the language is required. Both L1 and L2 revealed significant activation in syntax-specific areas in left hemisphere clusters and increased activation in EF-specific areas in right-hemisphere than left-hemisphere clusters, confirming syntax-specific functions of the left hemisphere, whereas the right hemisphere appears to subserve control functions required for switching languages. While previous reports indicate a leftward bias in planum temporale activation during auditory and linguistic processing, the present study shows the activation of the right planum temporale indicating its involvement in auditory attention. More pronounced grammaticality effect in left pars opercularis for L1 and in left pSTG for L2 indicate differences in the processing of morphosyntactic information in these brain regions. Nevertheless, the activation of pars opercularis and pSTG emphasize the centrality of these regions in the processing of person-number phi-features. Taken together, the present results confirm that morphosyntactic processing in bilinguals relates to composite, syntax-sensitive and EF-sensitive mechanisms in which some nodes of the language network are differentially involved.


2020 ◽  
Author(s):  
Sara Mascheretti ◽  
Meaghan Perdue ◽  
Bei Feng ◽  
Chiara Andreola ◽  
Ginette Dionne ◽  
...  

The BDNF gene is a prominent promoter of neuronal development, maturation and plasticity. Its Val66Met polymorphism affects brain morphology and function within several areas and is associated with several cognitive functions and neurodevelopmental disorder susceptibility. Recently, it has been associated with reading, reading-related traits and altered neural activation in reading–related brain regions. However, it remains unknown if the intermediate phenotypes (IPs, such as brain activation and phonological skills) mediate the pathway from gene to reading or reading disability. By conducting a serial multiple mediation model in a sample of 94 children (age 5-13), our findings revealed no direct effects of genotype on reading. Instead, we found that genotype is associated with brain activation in reading-related and more domain general regions which in turn is associated with phonological processing which is associated with reading. These findings suggest that the BDNF- Val66Met polymorphism is related to reading via phonological processing and functional activation. These results support brain imaging data and neurocognitive traits as viable IPs for complex behaviors.


2010 ◽  
Vol 22 (1) ◽  
pp. 48-66 ◽  
Author(s):  
Philippe Pinel ◽  
Stanislas Dehaene

Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall “dominance” of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific cerebral subregions? Or is it merely coincidental? To shed light on this issue, we performed a “colateralization analysis” over 209 healthy subjects: We investigated whether normal variations in the degree of left hemispheric asymmetry in areas involved in sentence listening and reading are mirrored in the asymmetry of areas involved in mental arithmetic. Within the language network, a region-of-interest analysis disclosed partially dissociated patterns of lateralization, inconsistent with an overall “dominance” model. Only two of these areas presented a lateralization during sentence listening and reading which correlated strongly with the lateralization of two regions active during calculation. Specifically, the profile of asymmetry in the posterior superior temporal sulcus during sentence processing covaried with the asymmetry of calculation-induced activation in the intraparietal sulcus, and a similar colateralization linked the middle frontal gyrus with the superior posterior parietal lobule. Given recent neuroimaging results suggesting a late emergence of hemispheric asymmetries for symbolic arithmetic during childhood, we speculate that these colateralizations might constitute developmental traces of how the acquisition of linguistic symbols affects the cerebral organization of the arithmetic network.


2019 ◽  
pp. 030573561988369
Author(s):  
Ching-I Lu ◽  
Margaret L Greenwald ◽  
Yung-Yang Lin ◽  
Susan M Bowyer

Transposing of musical notes is a cognitively challenging task requiring working memory and the ability to convert notes mentally from one musical key to another. We used magnetoencephalography (MEG) to compare the timing and localization of brain regions active during transposing of printed music versus sight-reading of music in 21 professional musicians. Musical transposing of visual stimuli has not been examined in previous brain imaging studies. The MEG data were analyzed using three techniques: MR-FOCUSS (a current density imaging technique), coherence source imaging, and neural synchrony analysis. MEG was effective in detecting differences in brain activation underlying the increased cognitive load of a visual task and stimulus length. The additional mental conversion required for transposing compared to the sight-reading task was linked to increased frontal lobe activation and slowed activation of the ventral (fusiform gyrus) occipito-temporal stream of visual-spatial encoding.


Author(s):  
Patrick Bach ◽  
Martin Grosshans ◽  
Anne Koopmann ◽  
Peter Kienle ◽  
Georgi Vassilev ◽  
...  

AbstractObesity is highly prevalent worldwide and results in a high disease burden. The efforts to monitor and predict treatment outcome in participants with obesity using functional magnetic resonance imaging (fMRI) depends on the reliability of the investigated task-fMRI brain activation. To date, no study has investigated whole-brain reliability of neural food cue-reactivity. To close this gap, we analyzed the longitudinal reliability of an established food cue-reactivity task. Longitudinal reliability of neural food-cue-induced brain activation and subjective food craving ratings over three fMRI sessions (T0: 2 weeks before surgery, T1: 8 weeks and T2: 24 weeks after surgery) were investigated in N = 11 participants with obesity. We computed an array of established reliability estimates, including the intraclass correlation (ICC), the Dice and Jaccard coefficients and similarity of brain activation maps. The data indicated good reliability (ICC > 0.6) of subjective food craving ratings over 26 weeks and excellent reliability (ICC > 0.75) of brain activation signals for the contrast of interest (food > neutral) in the caudate, putamen, thalamus, middle cingulum, inferior, middle and superior occipital gyri, and middle and superior temporal gyri and cunei. Using similarity estimates, it was possible to re-identify individuals based on their neural activation maps (73%) with a fading degree of accuracy, when comparing fMRI sessions further apart. The results show excellent reliability of task-fMRI neural brain activation in several brain regions. Current data suggest that fMRI-based measures might indeed be suitable to monitor and predict treatment outcome in participants with obesity undergoing bariatric surgery.


2018 ◽  
Vol 52 (1/2) ◽  
pp. 118-146 ◽  
Author(s):  
Marco Hubert ◽  
Mirja Hubert ◽  
Marc Linzmajer ◽  
René Riedl ◽  
Peter Kenning

Purpose The purpose of this study is to examine how consumer personality trait impulsiveness influences trustworthiness evaluations of online-offers with different trust-assuring and trust-reducing elements by measuring the brain activity of consumers. Shoppers with high degrees of impulsiveness are referred to as hedonic shoppers, and those with low degrees are referred to as prudent consumers. Design/methodology/approach To investigate the differences between neural processes in the brains of hedonic and prudent shoppers during the trustworthiness evaluation of online-offers, the present study used functional magnetic resonance imaging (fMRI) and region-of-interest analysis to correlate neural activity patterns with behavioral measures of the study participants. Findings Drawing upon literature reviews on the neural correlates of both trust in online settings and consumer impulsiveness and using an experimental design that links behavioral and fMRI data, the study shows that consumer impulsiveness can exert a significant influence on the evaluation of online-offers. With regard to brain activation, both groups (hedonic and prudent shoppers) exhibit similar neural activation tendencies, but differences exist in the magnitude of activation patterns in brain regions that are closely related to trust and impulsiveness such as the dorsal striatum, anterior cingulate, the dorsolateral prefrontal cortex and the insula cortex. Research limitations/implications The data provide evidence that consumers within the hedonic group evaluate online-offers differently with regard to their trustworthiness compared to the prudent group, and that these differences in evaluation are rooted in neural activation differences in the shoppers’ brains. Practical implications Marketers need to be made aware of the fact that neurological insights can be used for market segmentation, because consumers’ decision-making processes help explain behavioral outcomes (here, trustworthiness evaluations of online-offers). In addition, consumers can learn from an advanced understanding of their brain functions during decision-making and their relation to personal traits such as impulsiveness. Originality/value Considering the importance of trust in online shopping, as well as the fact that personality traits such as impulsiveness influence the purchase process to a high degree, this study is the first to systematically investigate the interplay of online trustworthiness perceptions and differences in consumer impulsiveness with neuroscientific methods.


1999 ◽  
Vol 5 (4) ◽  
pp. 308-319 ◽  
Author(s):  
GREGORY G. BROWN ◽  
SANDRA S. KINDERMANN ◽  
GREG J. SIEGLE ◽  
ERIC GRANHOLM ◽  
ERIC C. WONG ◽  
...  

Patterns of brain activation associated with covert performance of the Stroop Color–Word task were studied in young, healthy, adult volunteers using blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). Comparisons of the incongruous Stroop condition were made with both color naming and word reading baselines. Areas of the left and right anterior cingulate, the right precuneus, and the left pars opercularis displayed larger BOLD signal responses during the incongruous Stroop condition than during baseline conditions. Activation of BOLD signals in these areas was highly repeatable. In a second experiment, pupil diameter was used to assess cognitive load in 7 individuals studied during overt and covert performance of both Stroop and color naming conditions. Cognitive load was similar in overt and covert response conditions. Results from the BOLD study indicate that brain regions participating in selective visual attention and in the selection of motor programs involved in speech were activated more by the Stroop task than by the baseline tasks. The neural substrate involved in the resolution of the perceptual and motor conflicts elicited by the Stroop Color–Word task does not appear to be a single brain region. Rather, a network of brain regions is implicated, with separate regions within this system supporting distinct functions. (JINS, 1999, 5, 308–319.)


Sign in / Sign up

Export Citation Format

Share Document