Car-Following Behavior Analysis from Microscopic Trajectory Data

Author(s):  
Saskia Ossen ◽  
Serge P. Hoogendoorn

The development of accurate and robust models in the field of car following has suffered greatly from the lack of appropriate microscopic data. Because of this lack, little is known about differences in car-following behavior between individual driver–vehicle combinations. This paper studies the car-following behaviors of individual drivers by making use of vehicle trajectory data extracted from high-resolution digital images collected at a high frequency from a helicopter. The analysis was performed by estimating the parameters of different specifications of the well-known Gazis–Herman–Rothery car-following rule for individual drivers. This analysis showed that a relation between the stimuli and the response could be established in 80% of the cases. The main contribution of this paper is that considerable differences between the car-following behaviors of individual drivers could be identified. These differences are expressed as different optimal parameter values for the reaction time and the sensitivity, as well as different car-following models that appear to be optimal on the basis of the data for individual drivers.

CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zuyao Zhang ◽  
Li Tang ◽  
Yifeng Wang ◽  
Xuejun Zhang

Author(s):  
Ruihua Tao ◽  
Heng Wei ◽  
Yinhai Wang ◽  
Virginia P. Sisiopiku

This paper explores driver behavior in a paired car-following mode in response to a speed disturbance from a front vehicle. A current state– control action–expected state (SAS) chain is developed to provide a framework for modeling of the hierarchy of expected actions incurred during the need for speed disturbance absorption. Three car-following scenarios and one lane-changing scenario are identified with defined perceptual informative variables to describe the process of speed disturbance absorption. Those variables include dynamic spacing versus the follower's speed, disturbance-effecting and -ending spacing, headway, acceleration– deceleration, speed recovery period, speed advantage, and lane-changing duration. A significant improvement in car-following modeling introduced in the paper is the integration of car-following and lane-changing behaviors in the SAS chain. Moreover, critical values of perceptual informative variables are statistically developed as a function of the follower's speed by using observed vehicle trajectory data. Furthermore, models that determine the probability of a lane change in response to a speed disturbance and models for acceptable lane-changing decision-making conditions at the adjacent lanes are developed on the basis of the analysis of observed vehicle trajectory data. The work presented in this paper provides an analysis of speed disturbance and speed absorption phenomena and car-following and lane-changing behaviors at the microscopic level. This work establishes the foundation for further research on multiple speed disturbance absorption and its impact on traffic stabilities at the macroscopic analysis level.


2010 ◽  
Vol 108-111 ◽  
pp. 805-810 ◽  
Author(s):  
Hao Wang ◽  
Wei Wang ◽  
Jun Chen

This paper presents a methodology for car-following models calibration with vehicle trajectory data. A two-step optimization method is performed for searching the best-fit parameters of two popular car-following models, namely, the Helly model and the IDM model. The model calibration results verify the validity of the optimization method. Based on the results of calibrations, the intra-driver heterogeneity of driving behavior between the acceleration process and the deceleration process is studied. It is found that obvious intra-driver heterogeneities exist in driving behaviours between acceleration processes and deceleration processes of car-following. Besides, some criteria are proposed for the selection of sub-trajectories corresponding to both the acceleration and the deceleration processes of car-following. This work not only develops a general approach for car-following model calibration with vehicle trajectory data, but also provides insight into the intra-driver heterogeneity in car-following behaviours.


Author(s):  
Terry Tianya Zhang ◽  
Mengyang Guo ◽  
Peter J. Jin ◽  
Yi Ge ◽  
Jie Gong

High-resolution vehicle trajectory data can be used to generate a wide range of performance measures and facilitate many smart mobility applications for traffic operations and management. In this paper, a Longitudinal Scanline LiDAR-Camera model is explored for trajectory extraction at urban arterial intersections. The proposed model can efficiently detect vehicle trajectories under the complex, noisy conditions (e.g., hanging cables, lane markings, crossing traffic) typical of an arterial intersection environment. Traces within video footage are then converted into trajectories in world coordinates by matching a video image with a 3D LiDAR (Light Detection and Ranging) model through key infrastructure points. Using 3D LiDAR data will significantly improve the camera calibration process for real-world trajectory extraction. The pan-tilt-zoom effects of the traffic camera can be handled automatically by a proposed motion estimation algorithm. The results demonstrate the potential of integrating longitudinal-scanline-based vehicle trajectory detection and the 3D LiDAR point cloud to provide lane-by-lane high-resolution trajectory data. The resulting system has the potential to become a low-cost but reliable measure for future smart mobility systems.


Author(s):  
Benjamin Coifman ◽  
Lizhe Li ◽  
Wen Xiao

The 1974 paper by Treiterer and Myers is a seminal work in traffic flow theory. This longevity is in part because of the impressive collection of manually extracted vehicle trajectories. To date, only a few studies have rivaled the scale of the empirical vehicle trajectory data used in Treiterer and Myers. Their data collection used high-speed aerial photography and manual data reduction to follow hundreds of vehicles. In spite of the Herculean collection effort, the trajectory data set was never released and has since been lost. Fortunately, the plots survive and the present work re-extracts the vehicle trajectory data from the time–space diagrams. The discussion places the value of the data in context and then uses the data to put an end to decades of misinterpretation that started with Treiterer himself. The central thesis of Treiterer and Myers generated considerable interest: a hysteresis whereby drivers exhibit different fundamental behavior depending on whether they are entering or exiting a disturbance. There has been extensive debate about the authors’ findings in the literature, but without the original data set any interpretation has required considerable speculation. With the resurrected trajectories, this work reexamines the vehicles underlying the hysteresis and finally quells the speculation. Rather than arising from car following behavior, it turns out that the enigmatic progression arose from a combination of lane change maneuvers and unremarkable transitions into or out of the congested regime. On publication, the re-extracted data from this paper will be released to the research community.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yizhen Xie ◽  
Qichao Ni ◽  
Osama Alfarraj ◽  
Haoran Gao ◽  
Guojiang Shen ◽  
...  

The car-following model describes the microscopic behavior of the vehicle. However, the existing car-following models set the drivers’ reaction time to a fixed value without considering its dynamics. In order to improve the accuracy of car-following model, this paper proposes Deep Feature Learning-based Car-Following Model (DeepCF), a car-following model based on fatigue driving and Generative Adversarial Networks (GAN). The model is composed of the drivers’ reaction time model and the car-following decision algorithm. First, we regard driving fatigue as the starting point to study the influence of driving time and the acceleration of the preceding vehicle on the drivers’ reaction time, and develop a coarse-grained drivers’ reaction time model. Secondly, considering the impact of fatigue driving on car-following decisions, we utilize GAN to generate a driving decision database based on reaction time and use Euclidean distance as a decision search indicator. Finally, we conduct experiments on a real data set, and the results indicate that our DeepCF model is superior to baseline models.


Author(s):  
Sina Dabiri ◽  
Montasir Abbas

Car-following models, as the essential part of traffic microscopic simulations, have been utilized to analyze and estimate longitudinal drivers’ behavior for sixty years. The conventional car-following models use mathematical formulas to replicate human behavior in car-following phenomenon. The incapability of these approaches to capture the complex interactions between vehicles calls for deploying advanced learning frameworks to consider more detailed behavior of drivers. In this study, we apply the gradient boosting of regression tree (GBRT) algorithm to vehicle trajectory data sets, which have been collected through the Next Generation Simulation (NGSIM) program, to develop a new car-following model. First, the regularization parameters of the proposed method are tuned using cross-validation technique and sensitivity analysis. Second, prediction performance of the GBRT is compared to the world-famous Gazis-Herman-Rothery (GHR) model, when both models have been trained on the same data sets. The estimation results of the models on unseen records indicate the superiority of the GBRT algorithm in capturing the motion characteristics of two successive vehicles.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Bin Lu ◽  
Shaoquan Ni ◽  
Scott S. Washburn

This paper presents a Support Vector Regression (SVR) approach that can be applied to predict the multianticipative driving behavior using vehicle trajectory data. Building upon the SVR approach, a multianticipative car-following model is developed and enhanced in learning speed and predication accuracy. The model training and validation are conducted by using the field trajectory data extracted from the Next Generation Simulation (NGSIM) project. During the model training and validation tests, the estimation results show that the SVR model performs as well as IDM model with respect to the model prediction accuracy. In addition, this paper performs a relative importance analysis to quantify the multianticipation in terms of the different stimuli to which drivers react in platoon car following. The analysis results confirm that drivers respond to the behavior of not only the immediate leading vehicle in front but also the second, third, and even fourth leading vehicles. Specifically, in congested traffic conditions, drivers are observed to be more sensitive to the relative speed than to the gap. These findings provide insight into multianticipative driving behavior and illustrate the necessity of taking into account multianticipative car-following model in microscopic traffic simulation.


2020 ◽  
Vol 12 (4) ◽  
pp. 1552 ◽  
Author(s):  
Shuaiyang Jiao ◽  
Shengrui Zhang ◽  
Bei Zhou ◽  
Zixuan Zhang ◽  
Liyuan Xue

In intelligent transportation systems, vehicles can obtain more information, and the interactivity between vehicles can be improved. Therefore, it is necessary to study car-following behavior during the introduction of intelligent traffic information technology. To study the impacts of drivers’ characteristics on the dynamic characteristics of car-following behavior in a vehicle-to-vehicle (V2V) communication environment, we first analyzed the relationship between drivers’ characteristics and the following car’s optimal velocity using vehicle trajectory data via the grey relational analysis method and then presented a new optimal velocity function (OVF). The boundary conditions of the new OVF were analyzed theoretically, and the results showed that the new OVF can better describe drivers’ characteristics than the traditional OVF. Subsequently, we proposed an extended car-following model by combining V2V communication based on the new OVF and previous car-following models. Finally, numerical simulations were carried out to explore the effect of drivers’ characteristics on car-following behavior and fuel economy of vehicles, and the results indicated that the proposed model can improve vehicles’ mobility, safety, fuel consumption, and emissions in different traffic scenarios. In conclusion, the performance of traffic flow was improved by taking drivers’ characteristics into account under the V2V communication situation for car-following theory.


Sign in / Sign up

Export Citation Format

Share Document