Impact of Heavy-Duty Diesel Truck Activity on Fuel Consumption and Its Implication for the Reduction of Greenhouse Gas Emissions

Author(s):  
Sonya Collier ◽  
Chris Ruehl ◽  
Seungju Yoon ◽  
Kanok Boriboonsomsin ◽  
Thomas D. Durbin ◽  
...  

Activity data from 79 line-haul and vocational trucks were analyzed to estimate trip-averaged fuel consumption per distance driven and per work performed. The 79 trucks had engine model years ranging from 2008 to 2015 and average (±standard deviation) miles per gallon of 5.5 ± 1.7, which is comparable to other large fleet studies. Engine output work used to overcome various forms of resistance was minimized at vehicle speeds between 54 and 60 mph, which led to best fuel economy. The average gallons-per-brake horsepower-hour (gal/BHP-HR) was 0.058 ± 0.0085. When comparing the gal/BHP-HR per trip speed, higher average trip speeds led to improved fuel economy (lower gal/BHP-HR). In the case of out-of-state line-haul trucks, fuel economy was also dependent on model year. The newer model year out-of-state line-haul truck (2014) had a significant improvement in fuel economy compared with the older model year trucks (2012 and 2013). This could be the result of more stringent CO2 emission standards beginning for model year 2014 trucks under the Phase 1 Greenhouse Gas rule, but data on more vehicles would further corroborate this. The trip-averaged CO2 emissions were calculated for each truck and it was found that some truck groups displayed consistent trip-averaged emissions whereas others displayed high variability despite belonging to the same fleet. Several of the trucks engaged in significant idling, with a median contribution to their CO2 emissions of 4.2%.

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988625 ◽  
Author(s):  
Lijun Hao ◽  
Chunjie Wang ◽  
Hang Yin ◽  
Chunxiao Hao ◽  
Haohao Wang ◽  
...  

In order to estimate the light-duty vehicle fuel economy at high-altitude areas, the coast-down tests of a passenger car on level road were conducted at different elevations, and the coast-down resistance coefficients were calculated. Furthermore, a fuel economy model for a light-duty vehicle adopting backward simulation method was developed, and it mainly consists of vehicle dynamic model, internal combustion engine model, transmission model, and differential model. The internal combustion engine model consists of the brake-specific fuel consumption maps as functions of engine torque and engine speed, and the brake-specific fuel consumption map near sea level was constructed based on engine experimental data, and the brake-specific fuel consumption maps at high altitudes were calculated by GT-Power Modeling of the internal combustion engine. The fuel consumption rate was calculated from the brake-specific fuel consumption maps and brake power and used to calculate the fuel economy of the light-duty vehicle. The model predicted fuel consumption data met well with the test results, and the model prediction errors are within 5%.


Author(s):  
Yu Chen ◽  
Carol Lynn Deck

In recent years the attention of the internal combustion engine industry has been on improving fuel economy. These changes not only decrease the amount of fuel used and improve the efficiency of the engine, but also save the end-user on fuel costs, reduce engine emissions, and aid in the achievement of future government fuel economy regulations. An approach to decreasing fuel consumption is through improvements to engine mechanical and thermal efficiency. MAHLE has developed a testing method to accurately measure engine specific fuel consumption (SFC). SFC is an indicator of engine efficiency, hence it is directly effected by a reduction in friction. Since changes in SFC are small, considerable precision was required to measure it. To achieve this high level of accuracy key engine parameters were controlled along with boundary parameters. This study utilized a firing heavy-duty diesel engine running on a dynamometer. Results are presented to depict the repeatability of the technique over speed and load.


Author(s):  
Ian Briggs ◽  
Geoffrey McCullough ◽  
Stephen Spence ◽  
Roy Douglas ◽  
Richard O’Shaughnessy ◽  
...  

The fuel consumption of automotive vehicles has become a prime consideration to manufacturers and operators as fuel prices continue to rise steadily, and legislation governing toxic emissions becomes ever more strict. This is particularly true for bus operators as government fuel subsidies are cut or removed. In an effort to reduce the fuel consumption of a diesel-electric hybrid bus, an exhaust recovery turbogenerator has been selected from a wide ranging literature review as the most appropriate method of recovering some of the wasted heat in the exhaust line. This paper examines the effect on fuel consumption of a turbogenerator applied to a 2.4-litre diesel engine. A validated one-dimensional engine model created using Ricardo WAVE was used as a baseline, and was modified in subsequent models to include a turbogenerator downstream, and in series with, the turbocharger turbine. A fuel consumption map of the modified engine was produced, and an in-house simulation tool was then used to examine the fuel economy benefit delivered by the turbogenerator on a bus operating on various drive-cycles. A parametric study is presented which examined the performance of turbogenerators of various size and power output. The operating strategy of the turbogenerator was also discussed with a view to maximising turbine efficiency at each operating point. The performance of the existing turbocharger on the hybrid bus was also investigated; both the compressor and turbine were optimised and the subsequent benefits to the fuel consumption of the vehicle were shown. The final configuration is then presented and the overall improvement in fuel economy of the hybrid bus was determined over various drive-cycles.


Author(s):  
Tao Deng ◽  
Ke Zhao ◽  
Haoyuan Yu

In the process of sufficiently considering fuel economy of plug-in hybrid electric vehicle (PHEV), the working time of engine will be reduced accordingly. The increased frequency that the three-way catalytic converter (TWCC) works in abnormal operating temperature will lead to the increasing of emissions. This paper proposes the equivalent consumption minimization strategy (ECMS) to ensure the catalyst temperature of PHEV can work in highly efficient areas, and the influence of catalyst temperature on fuel economy and emissions is considered. The simulation results show that the fixed equivalent factor of ECMS has great limitations for the underutilized battery power and the poor fuel economy. In order to further reduce fuel consumption and keep the emission unchanged, an equivalent factor map based on initial state of charge (SOC) and vehicle mileage is established by the genetic algorithm. Furthermore, an Adaptive changing equivalent factor is achieved by using the following strategy of SOC trajectory. Ultimately, adaptive equivalent consumption minimization strategy (A-ECMS) considering catalyst temperature is proposed. The simulation results show that compared with ordinary ECMS, HC, CO, and NOX are reduced by 14.6%, 20.3%, and 25.8%, respectively, which effectively reduces emissions. But the fuel consumption is increased by only 2.3%. To show that the proposed method can be used in actual driving conditions, it is tested on the World Light Vehicle Test Procedure (WLTC).


Author(s):  
Alex Oliveira ◽  
Junfeng Yang ◽  
Jose Sodre

Abstract This work evaluated the effect of cooled exhaust gas recirculation (EGR) on fuel consumption and pollutant emissions from a diesel engine fueled with B8 (a blend of biodiesel and Diesel 8:92%% by volume), experimentally and numerically. Experiments were carried out on a Diesel power generator with varying loads from 5 kW to 35 kW and 10% of cold EGR ratio. Exhaust emissions (e.g. THC, NOX, CO etc.) were measured and evaluated. The results showed mild EGR and low biodiesel content have minor impact of engine specific fuel consumption, fuel conversion efficiency and in-cylinder pressure. Meanwhile, the combination of EGR and biodiesel reduced THC and NOX up to 52% and 59%, which shows promising effect on overcoming the PM-NOX trade-off from diesel engine. A 3D CFD engine model incorporated with detailed biodiesel combustion kinetics and NOx formation kinetics was validated against measured in-cylinder pressure, temperature and engine-out NO emission from diesel engine. This valid model was then employed to investigate the in-cylinder temperature and equivalence ratio distribution that predominate NOx formation. The results showed that the reduction of NOx emission by EGR and biodiesel is obtained by a little reduction of the local in-cylinder temperature and, mainly, by creating comparatively rich combusting mixture.


2018 ◽  
Vol 16 (6) ◽  
pp. 869-888 ◽  
Author(s):  
Siddharth Kulkarni ◽  
David John Edwards ◽  
Erika Anneli Parn ◽  
Craig Chapman ◽  
Clinton Ohis Aigbavboa ◽  
...  

Purpose Vehicle weight reduction represents a viable means of meeting tougher regulatory requirements designed to reduce fuel consumption and control greenhouse gas emissions. This paper aims to present an empirical and comparative analysis of lightweight magnesium materials used to replace conventional steel in passenger vehicles with internal combustion engines. The very low density of magnesium makes it a viable material for lightweighting given that it is lighter than aluminium by one-third and steel by three-fourth. Design/methodology/approach A structural evaluation case study of the “open access” Wikispeed car was undertaken. This included an assessment of material design characteristics such as bending stiffness, torsional stiffness and crashworthiness to evaluate whether magnesium provides a better alternative to the current usage of aluminium in the automotive industry. Findings The Wikispeed car had an issue with the rocker beam width/thickness (b/t) ratio, indicating failure in yield instead of buckling. By changing the specified material, Aluminium Alloy 6061-T651 to Magnesium EN-MB10020, it was revealed that vehicle mass could be reduced by an estimated 110 kg, in turn improving the fuel economy by 10 per cent. This, however, would require mechanical performance compromise unless the current design is modified. Originality/value This is the first time that a comparative analysis of material substitution has been made on the Wikispeed car. The results of such work will assist in the lowering of harmful greenhouse gas emissions and simultaneously augment fuel economy.


2016 ◽  
Vol 13 (6) ◽  
pp. 1949-1966 ◽  
Author(s):  
Carolyn-Monika Görres ◽  
Claudia Kammann ◽  
Reinhart Ceulemans

Abstract. Recent technological advances have enabled the wider application of automated chambers for soil greenhouse gas (GHG) flux measurements, several of them commercially available. However, few studies addressed the challenges associated with operating these systems. In this contribution we compared two commercial soil GHG chamber systems – the LI-8100A Automated Soil CO2 Flux System and the greenhouse gas monitoring system AGPS. From April until August 2014, the two systems monitored in parallel soil respiration (SR) fluxes at a recently harvested poplar (Populus) plantation, which provided a bare field situation directly after the harvest as well as a closed canopy later on. For the bare field situation (15 April–30 June 2014), the cumulated average SR obtained from the unfiltered data sets of the LI-8100A and the AGPS were 520 and 433 g CO2 m−2 respectively. For the closed canopy phase (1 July–31 August 2014), which was characterized by a higher soil moisture content, the cumulated average SR estimates were not significantly different with 507 and 501 g CO2 m−2 for the AGPS and the LI-8100A respectively. Flux quality control and filtering did not significantly alter the results obtained by the LI-8100A, whereas the AGPS SR estimates were reduced by at least 20 %. The main reasons for the observed differences in the performance of the two systems were (i) a lower data coverage provided by the AGPS due to technical problems; (ii) incomplete headspace mixing in the AGPS chambers; (iii) lateral soil CO2 diffusion below the collars during AGPS chamber measurements; and (iv) a possible overestimation of nighttime SR fluxes by the LI-8100A. Additionally, increased root growth was observed within the LI-8100A collars but not within the AGPS collars, which might have also contributed to the observed differences. In contrast to the LI-8100A, the AGPS had the gas sample inlets installed inside the collars and not the chambers. This unique design feature enabled for the first time the detection of disturbed chamber measurements during nights with a stratified atmosphere, resulting in unbiased nighttime SR estimates. Thus besides providing high temporal frequency flux data, automated chamber systems offer another possibility to greatly improve our understanding of SR fluxes.


Sign in / Sign up

Export Citation Format

Share Document