Predictive Framework for Modeling Changes in Asphalt Mixture Moduli with Oxidative Aging

Author(s):  
Nooralhuda F. Saleh ◽  
Douglas Mocelin ◽  
Farhad Yousefi Rad ◽  
Cassie Castorena ◽  
B. Shane Underwood ◽  
...  

This paper presents a predictive framework for asphalt mixture moduli as a function of aging time with two levels of sophistication. This work is built on the method currently implemented in Pavement mechanistic-empirical (ME) that uses an effective time/frequency concept based on time-aging superposition to model the effect of aging on a mixture’s modulus. Time-aging superposition implies that an asphalt mixture’s modulus mastercurves, corresponding to different aging levels, coincide when they are shifted horizontally on the log-frequency axis. This study improves the accuracy of the existing model by decoupling the time-temperature and time-aging shifts. The new framework also uses the binder dynamic shear modulus | G*| as an aging index instead of the viscosity, which is used in Pavement ME. The | G*| aging index is used to calculate an effective frequency at short-term aging (STA), which is then used in the asphalt mixture sigmoidal model to calculate the corresponding asphalt mixture modulus with aging. The pavement aging model introduced by NCHRP 09-54 predicts log | G*| at 64°C and 10 rad/s for a specific field-aged condition and pavement depth. The proposed framework can use the predicted log | G*| to predict the mixture’s corresponding dynamic modulus (| E*|) at that aging level and pavement depth. Level 1 of this framework requires characterizing the | G*| at STA and calibrating the NCHRP 09-54 pavement aging model as well as measuring the mixture | E*| at STA. Level 2 does not require any binder testing, providing relatively less accurate predictions but relieving some testing requirements.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5051
Author(s):  
Fei Zhang ◽  
Lan Wang ◽  
Chao Li ◽  
Yongming Xing

To identify the most accurate approach for constructing of the dynamic modulus master curves for warm mix crumb rubber modified asphalt mixtures and assess the feasibility of predicting the phase angle master curves from the dynamic modulus ones. The SM (Sigmoidal model) and GSM (generalized sigmoidal model) were utilized to construct the dynamic modulus master curve, respectively. Subsequently, the master curve of phase angle could be predicted from the master curve of dynamic modulus in term of the K-K (Kramers–Kronig) relations. The results show that both SM and GSM can predict the dynamic modulus very well, except that the GSM shows a slightly higher correlation coefficient than SM. Therefore, it is recommended to construct the dynamic modulus master curve using GSM and obtain the corresponding phase angle master curve in term of the K-K relations. The Black space diagram and Wicket diagram were utilized to verify the predictions were consistent with the LVE (linear viscoelastic) theory. Then the master curve of storage modulus and loss modulus were also obtained. Finally, the creep compliance and relaxation modulus can be used to represent the creep and relaxation properties of warm-mix crumb rubber-modified asphalt mixtures.


2019 ◽  
Vol 9 (12) ◽  
pp. 2542
Author(s):  
Hongmei Li ◽  
Jiwang Jiang ◽  
Song Li ◽  
Xiang Ma

Asphalt mastic is a combination of binder and filler. The binder-filler system within asphalt mixtures plays an important role in adhesion between mineral aggregates. The aging of binders in pavement always happens with fillers inside or contact with mineral aggregates, so it is critical to investigate the evolved rheological property of binder-filler systems during oxidative aging. In this study, simple film oven aging methods for the aging of mastics (binder-filler system) were conducted and verified by comparing the master-curves of aged mastics at different oven positions or different aging times. The frequency sweep test was performed to measure the changing stiffness of mastics with a different combination of binders and filler contents. Test results show that oven positions could influence the aging effect of the mastics significantly, given the influence of circulation. With increasing aging times, the complex modulus increases while phase angle decreases. Comparing the mastics which were first aged then mixed with mastics which were first mixed then aged, it was observed that fillers inside the binder could accelerate aging of the mastics. Additionally, the aging index of mastics with different combinations showed that both the modification of binders and filler contents could affect the aging rate of the mastics.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1586 ◽  
Author(s):  
Guojin Tan ◽  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Yong Wang ◽  
Zhiqing Zhu

Basalt fiber has been proved to be a good modified material for asphalt mixture. The performance of basalt fiber modified asphalt mixture has been widely investigated by extensive researches. However, most studies focused on ordinary static load tests, and less attention was paid to the dynamic mechanical response of asphalt mixture incorporating with basalt fiber. This paper aims to establish the master curve of complex modulus of asphalt mixture incorporating of styrene-butadiene-styrene (SBS) polymer and basalt fiber using the generalized Sigmoidal model. Both loading frequency and temperature were investigated for dynamic mechanical response of asphalt mixture with basalt fiber. In addition, based on the time-temperature superposition principle, the master curves of complex modulus were constructed to reflect the dynamic mechanical response at an extended reduced frequency range at an arbitrary temperature. Results indicated that the generalized Sigmoidal model in this paper could better reflect the dynamic mechanical response accurately with correlation coefficients above 0.97, which is utilized to predict the dynamic mechanical performances accurately. Simultaneously, the modulus values exhibit an increasing trend with loading frequency and decrease versus temperature. However, the phase angle values showed different trends with frequency and temperature.


Author(s):  
Cheolmin Baek ◽  
B. Shane Underwood ◽  
Y. Richard Kim

Author(s):  
Ruxin Jing ◽  
Aikaterini Varveri ◽  
Xueyan Liu ◽  
Athanasios Scarpas ◽  
Sandra Erkens

Oxidative aging takes place in bituminous materials during the construction and service life of asphalt pavements and has a significant effect on their performance. In this study, porous asphalt cores were obtained from field test sections each year from 2014 to 2017. The evolution of the properties of the field cores and the recovered bitumen with time was investigated. Cyclic indirect tensile tests were performed to determine changes in the mechanical behavior of porous asphalt due to aging. Additionally, bitumen was extracted and recovered from 13 mm slices along the depth of the cores. The rheological and chemical properties of the recovered bitumen, as well as that of original bitumen aged in standard short- and long-term aging protocols, were investigated by means of dynamic shear rheometer and Fourier transform infrared spectrometer. The results show that the degree of aging is spatially dependent, resulting in a stiffness gradient within the asphalt layer. Moreover, the results demonstrate a weak relation between field aging and the standard laboratory aging protocols.


2016 ◽  
Vol 847 ◽  
pp. 413-417 ◽  
Author(s):  
Li Gao ◽  
Jian Ying Yu ◽  
Min Wu ◽  
Li Hui Xue

Ultraviolet (UV) absorber residue was used to modify bitumen. Effects of UV absorber residue on thermo-oxidative and UV aging properties of bitumen were evaluated by conventional physical properties and SARA (saturates, aromatics, resins and bitumenenes) analysis. The results showed that the viscosity aging index (VAI) and softening point increment (SPI) of bitumen decreased significantly due to introduction of the UV absorber residue, and the ductility retention rate (DRR) was evidently higher compared to the pristine bitumen. SARA show that UV absorber residue can effectively restrain the gelatinization of bitumen resulted from aging. As a consequence, the UV absorber residue modified bitumen displays enhanced aging resistance properties, which can be attributed to the physical sorption of activated carbon to lighter components in the thermo-oxidative aging process and the absorption of UV absorption residue to the ultraviolet light in the process of UV aging.


Author(s):  
Jung-Do Huh ◽  
Raymond E. Robertson

The oxidative aging data collected during the Strategic Highway Research Program have been analyzed in terms of kinetics of viscosity change with time and temperature. Changes in viscosity have been used as the measure of the progress of aging. The objective is to model viscosity increases accurately enough to be able to predict aging (in terms of viscosity changes) at pavement temperatures from short-term test data acquired at high temperature. This involved constituting a mathematical model, based on oxidative reactions, and a nonlinear regression of the data to test predictability of the proposed model. Clearly, there is a point beyond which viscosity change becomes independent of time, but no data were collected to that extent. Separately, it has been shown that oxidation of aliphatic sulfide to sulfoxide and oxidation of benzylic carbon to carbonyl are the principal chemical reactions that contribute to an increase in viscosity. The data fit the proposed equation sufficiently well to allow calculation of rate constants of viscosity increases for both reactions, and, hence, allow development of an Arrhenius temperature relationship. Finally, it is hoped that the proposed equation will provide reasonable estimates of rates of oxidative aging of asphalts at pavement temperatures from short-term, high-temperature oxidative aging data measured in a laboratory.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1698
Author(s):  
Guojin Tan ◽  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Yong Wang ◽  
Zhiqing Zhu

This study aims to study the freeze–thaw (F–T) resistance of asphalt mixture incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber by using the established complex master curves of the generalized Sigmoidal model. Asphalt mixture samples incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber were manufactured following the Superpave gyratory compaction (SGC) method and coring as well as sawing. After 0–21 F–T cycles processing, a complex modulus test asphalt mixture specimen was performed to evaluate the influence of the F–T cycle. Besides, according to the time–temperature superposition principle, the master curves of a complex modulus were constructed to reflect the dynamic mechanical response in an extended range of reduced frequency at an arbitrary temperature. The results indicated that the elastic and viscous portions of asphalt mixture incorporating SBS and basalt fiber have decreased overall. It could be observed from the dynamic modulus ratio that the dynamic modulus ratios of specimens were more affected by the F–T cycle at low frequency or high temperature. Thus, in the process of asphalt pavement design and maintenance, attention should be paid to seasonal frozen asphalt pavement under low frequency and high temperature.


2013 ◽  
Vol 753-755 ◽  
pp. 728-733 ◽  
Author(s):  
Teng Wang ◽  
Jun Tao Lin ◽  
Ling Pang ◽  
Min Lei ◽  
Kim Jenkins ◽  
...  

The fitting models of dynamic modulus of asphalt mixtures were studied in this paper. UTM dynamic modulus tests were adopted to determine the dynamic modulus of two asphalt (A, B) mixtures. Then, the WLF equation and Arrhenius formula, based on the time-temperature equivalence principle, were used to get the shift factors and master curves of asphalt mixtures. Combined with Sigmoidal model and CAM model, it was founded that the Arrhenius formula was more suitable to get the master curves of asphalt mixtures. What is more, the CAM model was more suitable to fit master curves of both asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document