scholarly journals Establishment of Complex Modulus Master Curves Based on Generalized Sigmoidal Model for Freeze–Thaw Resistance Evaluation of Basalt Fiber-Modified Asphalt Mixtures

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1698
Author(s):  
Guojin Tan ◽  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Yong Wang ◽  
Zhiqing Zhu

This study aims to study the freeze–thaw (F–T) resistance of asphalt mixture incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber by using the established complex master curves of the generalized Sigmoidal model. Asphalt mixture samples incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber were manufactured following the Superpave gyratory compaction (SGC) method and coring as well as sawing. After 0–21 F–T cycles processing, a complex modulus test asphalt mixture specimen was performed to evaluate the influence of the F–T cycle. Besides, according to the time–temperature superposition principle, the master curves of a complex modulus were constructed to reflect the dynamic mechanical response in an extended range of reduced frequency at an arbitrary temperature. The results indicated that the elastic and viscous portions of asphalt mixture incorporating SBS and basalt fiber have decreased overall. It could be observed from the dynamic modulus ratio that the dynamic modulus ratios of specimens were more affected by the F–T cycle at low frequency or high temperature. Thus, in the process of asphalt pavement design and maintenance, attention should be paid to seasonal frozen asphalt pavement under low frequency and high temperature.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1804
Author(s):  
Wensheng Wang ◽  
Guojin Tan ◽  
Chunyu Liang ◽  
Yong Wang ◽  
Yongchun Cheng

This study aims to study the viscoelastic properties of asphalt mixtures incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber under freeze–thaw (F-T) cycles by using the static creep test. Asphalt mixture samples incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber were manufactured following the Superpave gyratory compaction (SGC) method and coring as well as sawing. After 0 to 21 F-T cycles processing, a uniaxial compression static creep test for the asphalt mixture specimens was performed to evaluate the influence of F-T cycles. The results indicated that the F-T cycles caused a larger creep deformation in the asphalt mixtures, which led to a decrease in the rut resistance of the asphalt mixtures incorporating SBS polymer and basalt fiber. Besides, the resistance to deformation decreased significantly in the early stage of F-T cycles. On the other hand, the viscoelastic parameters were analyzed to discuss the variation of viscoelastic characteristics. The relaxation time increased with F-T cycles, which will not be conducive to internal stress dissipation. Compared with lignin fiber, basalt fiber can improve the resistance to high-temperature deformation and the low-temperature crack resistance of asphalt mixtures under F-T cycles.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1092 ◽  
Author(s):  
Yongchun Cheng ◽  
He Li ◽  
Wensheng Wang ◽  
Liding Li ◽  
Haitao Wang

This paper aims at the freeze–thaw (F-T) cycles resistance of styrene-butadiene-styrene (SBS) modified asphalt mixture reinforced with basalt fiber in order to explore the performance evaluation and prediction of asphalt mixtures at seasonal frozen regions. Asphalt was firstly modified by the common SBS and then SBS-modified stone mastic asphalt (SMA) specimens with basalt fiber were prepared by using Superpave gyratory compaction (SGC) method. Next, asphalt mixture specimens processed by 0–21 F-T cycles were adopted for the high-temperature compression test, low-temperature splitting test and indirect tensile stiffness modulus test. Meanwhile, a three-dimensional model of F-T damage evolution of the mixtures was also established based on the reliability and damage theory. The test results showed that the loss rates of mechanical strength increased rapidly, and then gradually flattened; however, these indications changed significantly after 15–18 F-T cycles. In addition, the exponential function could reflect the variation trend of the mechanical performances with F-T cycles to a certain degree. The damage evolution and prediction model based on the reliability and damage theory can be established to analyze the internal degradation law better.


2017 ◽  
Vol 50 (3) ◽  
pp. 256-275 ◽  
Author(s):  
Mahdi Delaviz Bayekolaei ◽  
Koorosh Naderi ◽  
Fereidoon Moghadas Nejad

In recent years, the use of nano materials for improving various mechanical and performance-related properties of polymer-modified asphalt binders has been growing rapidly. However, few researches investigated the effects of base binder and styrene–butadiene–styrene (SBS) structure on rutting resistance of polymer-nanocomposite-modified asphalt mixtures. This study investigated the effect of polymer–nanocomposite modification, using two different penetration grade asphalt binders and two types of SBS, on rutting properties of asphalt mixtures. Rheological properties of modified binders, Marshall stability, resilient modulus, and rut depth in wheel-tracking tests were used to evaluate the rutting performance of the modified binders and mixtures. The results indicated that both base binder type and SBS structure had significant effect on rutting resistance of polymer-nanocomposite-modified asphalt mixtures.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1586 ◽  
Author(s):  
Guojin Tan ◽  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Yong Wang ◽  
Zhiqing Zhu

Basalt fiber has been proved to be a good modified material for asphalt mixture. The performance of basalt fiber modified asphalt mixture has been widely investigated by extensive researches. However, most studies focused on ordinary static load tests, and less attention was paid to the dynamic mechanical response of asphalt mixture incorporating with basalt fiber. This paper aims to establish the master curve of complex modulus of asphalt mixture incorporating of styrene-butadiene-styrene (SBS) polymer and basalt fiber using the generalized Sigmoidal model. Both loading frequency and temperature were investigated for dynamic mechanical response of asphalt mixture with basalt fiber. In addition, based on the time-temperature superposition principle, the master curves of complex modulus were constructed to reflect the dynamic mechanical response at an extended reduced frequency range at an arbitrary temperature. Results indicated that the generalized Sigmoidal model in this paper could better reflect the dynamic mechanical response accurately with correlation coefficients above 0.97, which is utilized to predict the dynamic mechanical performances accurately. Simultaneously, the modulus values exhibit an increasing trend with loading frequency and decrease versus temperature. However, the phase angle values showed different trends with frequency and temperature.


2019 ◽  
Vol 22 (2) ◽  
pp. 94-101
Author(s):  
Miran Bahyam Ahmed ◽  
Alaa Hussein Abed ◽  
Yasir Mawla Hammood Al-Badran

Open-graded-fraction-course (OGFC), is a hot asphalt mixture usually utilized as a private purpose wearing course, because of open graded asphalt mixture and aggregates skeleton (stone-on-stone) contact, it contain a relatively high air voids’ percentage, after compaction which are permeable to water. In this research one type of gradation was used (12.5 mm) NMAS, to preparing the OGFC asphalt mixtures, penetration grade 40/50, crushed aggregate, asphalt content prepared with 4 % and up to 6 % by weight of mixture with 0.5 % increments. Optimum asphalt content (OAC) was selected based on these criteria, air voids content, asphalt draindown, permeability, and abrasion resistance (aged and un-aged) condition. The mix performance had been investigated by indirect tensile strength and moisture susceptibility (sensitivity) measured according to the (AASHTO T283-14). Results illustrate that the increasing of asphalt binder content leads to a decrease of the air voids content, abrasion loss and permeability values, while draindown increase, conversely, the indirect tensile strength (ITS) had been significantly increased for both conditions and this is a gaod suggestion to resistance alongside moisture susceptibility. It can be decided that the increasing of asphalt  binder percent in OGFC asphalt mixture, leads to an increase in the thickness of binder coating around the aggregates. On the other hand, the influence of modifier that prepared with 4% styrene-butadiene-styrene (SBS) on OGFC asphalt mixture tends to improve the mix properties and exhibit higher (TSR) as compared with original asphalt by (31, 27.7 and 24.4) % at asphalt percent (4.8, 5.3 and 5.8) %, respectively. The SBS improved the adhesion between aggregate and asphalt which leads to reduce stripping of HMA, horizontal deformation, and increased the tensile stiffness modulus value.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5715
Author(s):  
Bangwei Wu ◽  
Chufan Luo ◽  
Zhaohui Pei ◽  
Chuangchuang Chen ◽  
Ji Xia ◽  
...  

A wide variety of polymer additives have been widely used in recent years. However, the effect of different polymer additives on the durability of asphalt binders has not been investigated thoroughly. To evaluate the aging property of styrene-butadiene-styrene (SBS) asphalt binder with different polymer additives, three polymer modifiers, namely high modulus modifier (HMM), anti-rutting agent (ARA), and high viscosity modifier (HVM), were added to it. First, the Thin Film Over Test (TFOT) and Pressure Aging Vessel (PAV) was performed on the asphalt binders. The rheological properties of the four asphalt binders before and after aging were then checked by the Dynamic Shear Rheometer Test (DSR). The chemical compositions of the asphalt binders were determined by the Fourier Transform Infrared Spectrometer (FTIR) test. Several aging indicators were adopted to reflect the aging degree of the asphalt binders. The results show that when polymer additives are added to the SBS asphalt binder, the complex modulus, storage modulus, loss modulus, and rutting factor substantially increase and the phase angle decreases. All the test parameters become higher after aging. The phase angle of the SBS asphalt binder is the highest at both unaged and aged states, while its other parameters values are the smallest. Moreover, the Carbonyl Aging Indicator (CAI) of SBS with polymer additives becomes lower under both TFOT and PAV conditions, indicating that polymer additives can improve the aging resistance of SBS asphalt, of which HVM modifies the aging resistance best. Complex Modulus Aging Indicator (CMAI) and Storage Modulus Aging Indicator (SMAI) have the best correlation coefficients with CAI, and the two aging indicators can be used to predict the aging degree of polymer modified asphalt binders.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1006 ◽  
Author(s):  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Peilei Zhou ◽  
Guojin Tan ◽  
Haitao Wang ◽  
...  

Superpave gyratory compaction (SGC) and Marshall compaction methods are essentially designed according to volumetric properties. In spite of the similarity, the optimum asphalt contents (OAC) of the two methods are greatly affected by the laboratory compaction process, which would further influence their performance. This study aims to evaluate the performance of styrene-butadiene-styrene (SBS)-modified stone mastic asphalt (SMA) with basalt fiber by using SGC and Marshall compaction methods. Basalt fiber was proved to improve and strength the basic properties of SBS-asphalt according to test results of asphalt binder. The effects of SGC and Marshall compaction methods on OAC and volumetric properties, i.e., density, air voids (VA), voids in mineral aggregates (VMA), and voids filled with asphalt (VFA), were evaluated in detail. Finally, the pavement performance of asphalt mixture prepared by SGC and Marshall compaction methods were compared in order to analyze the high-temperature creep, low-temperature splitting, and moisture stability performance. Results showed that the OAC of SGC (~5.70%) was slightly lower than that of Marshall method (5.80%). Furthermore, the pavement performance of SGC specimens were improved to a certain extent compared with Marshall specimens, indicating that SGC has a better compaction effect and mechanical performance.


2013 ◽  
Vol 671-674 ◽  
pp. 1202-1207
Author(s):  
Ping Li ◽  
Jun Jun Pei ◽  
Yu Yao ◽  
Guo Wei Sun

Crack of asphalt pavement is one of the major destruction in pavement engineering. The bending test of small beam at low-temperature is often applied to evaluate the resisting crack for asphalt mixture. In this paper, based on J-integral theory in elastic-plastic fracture mechanics, performance of resisting crack of asphalt mixtures is analyzed in cases of different temperatures and contents of Styrene Butadiene Styrene (SBS) by bending tests of small beam. It is shown that the optimal condition for anti-cracking of asphalt mixtures is SBS contents of 4.2%~5.0% at 10°C using flexural tensile strain and stiffness modulus and the highest flexural tensile strengths of mixture occur at 0°C. Ductile fracture toughness of mixture with SBS modifier may be more sensitive to temperature from -10°C to 0°C and may be more useful to analysis elastic-plastic formation energy and energy releasing rate of asphalt mixture.


Sign in / Sign up

Export Citation Format

Share Document