Capabilities and Limitations of Telematics for Vehicle Emissions Inventories

Author(s):  
John W. Koupal ◽  
Allison DenBleyker ◽  
Gopi Manne ◽  
Maia Hill Batista ◽  
Thomas Schmitt

Eastern Research Group, Inc. evaluated the current state of personal vehicle telematics data with respect to emission inventory development, identifying relative strengths and weaknesses, and how these data could align better with the needs of emission modelers. A market survey of telematics firms provided an overview of available data, and identified several candidate sources for location-based and engine-based telematics data on personal vehicles. Data were then purchased from three different vendors: StreetLight Data, Moonshadow Mobile, and Otonomo. These data were applied in case studies conducted in the Denver metro area, U.S., to assess strengths and weaknesses of telematics for developing emission inventories. Case studies included using telematics to estimate regional vehicle miles traveled (VMT) for annual emission inventories; tracking the VMT impacts of COVID shutdown; generating location- and time-specific vehicle activity inputs for project scale “hot spot” air quality analysis; and estimating the distribution of fuel fill level from real-world data, which is important for evaporative emissions. These case studies confirmed that telematics can serve a growing range of emission inventory use cases, and use of these data may help improve emission inventory accuracy. However, there are also several limitations of the data to consider in preparing emission inventories; for example, it can be difficult to assess the representativeness of telematics data because of a lack of vehicle information. The authors encourage telematics firms to cater data products more directly to the needs of emission inventory modelers, to better harness the enormous potential of these data for refining vehicle emission inventory estimates.

2017 ◽  
Author(s):  
Jianlin Hu ◽  
Xun Li ◽  
Lin Huang ◽  
Qi Ying ◽  
Qiang Zhang ◽  
...  

Abstract. Accurate exposure estimates are required for health effects analyses of severe air pollution in China. Chemical transport models (CTMs) are widely used tools to provide detailed information of spatial distribution, chemical composition, particle size fractions, and source origins of pollutants. The accuracy of CTMs' predictions in China is largely affected by the uncertainties of public available emission inventories. The Community Multi-scale Air Quality model (CMAQ) with meteorological inputs from the Weather Research and Forecasting model (WRF) were used in this study to simulate air quality in China in 2013. Four sets of simulations were conducted with four different anthropogenic emission inventories, including the Multi-resolution Emission Inventory for China (MEIC), the Emission Inventory for China by School of Environment at Tsinghua University (SOE), the Emissions Database for Global Atmospheric Research (EDGAR), and the Regional Emission inventory in Asia version 2 (REAS2). Model performance was evaluated against available observation data from 422 sites in 60 cities across China. Model predictions of O3 and PM2.5 with the four inventories generally meet the criteria of model performance, but difference exists in different pollutants and different regions among the inventories. Ensemble predictions were calculated by linearly combining the results from different inventories under the constraint that sum of the squared errors between the ensemble results and the observations from all the cities was minimized. The ensemble annual concentrations show improved agreement with observations in most cities. The mean fractional bias (MFB) and mean fractional errors (MFE) of the ensemble predicted annual PM2.5 at the 60 cities are −0.11 and 0.24, respectively, which are better than the MFB (−0.25–−0.16) and MFE (0.26–0.31) of individual simulations. The ensemble annual 1-hour peak O3 (O3-1 h) concentrations are also improved, with mean normalized bias (MNB) of 0.03 and mean normalized errors (MNE) of 0.14, compared to MNB of 0.06–0.19 and MNE of 0.16–0.22 of the individual predictions. The ensemble predictions agree better with observations with daily, monthly, and annual averaging times in all regions of China for both PM2.5 and O3-1 h. The study demonstrates that ensemble predictions by combining predictions from individual emission inventories can improve the accuracy of predicted temporal and spatial distributions of air pollutants. This study is the first ensemble model study in China using multiple emission inventories and the results are publicly available for future health effects studies.


Author(s):  
Anwar Al Shami ◽  
Elissar Al Aawar ◽  
Abdelkader Baayoun ◽  
Najat A. Saliba ◽  
Jonilda Kushta ◽  
...  

AbstractPhysically based computational modeling is an effective tool for estimating and predicting the spatial distribution of pollutant concentrations in complex environments. A detailed and up-to-date emission inventory is one of the most important components of atmospheric modeling and a prerequisite for achieving high model performance. Lebanon lacks an accurate inventory of anthropogenic emission fluxes. In the absence of a clear emission standard and standardized activity datasets in Lebanon, this work serves to fill this gap by presenting the first national effort to develop a national emission inventory by exhaustively quantifying detailed multisector, multi-species pollutant emissions in Lebanon for atmospheric pollutants that are internationally monitored and regulated as relevant to air quality. Following the classification of the Emissions Database for Global Atmospheric Research (EDGAR), we present the methodology followed for each subsector based on its characteristics and types of fuels consumed. The estimated emissions encompass gaseous species (CO, NOx, SO2), and particulate matter (PM2.5 and PM10). We compare totals per sector obtained from the newly developed national inventory with the international EDGAR inventory and previously published emission inventories for the country for base year 2010 presenting current discrepancies and analyzing their causes. The observed discrepancies highlight the fact that emission inventories, especially for data-scarce settings, are highly sensitive to the activity data and their underlying assumptions, and to the methodology used to estimate the emissions.


2010 ◽  
Vol 10 (4) ◽  
pp. 600-609 ◽  
Author(s):  
R. Sitzenfrei ◽  
S. Fach ◽  
M. Kleidorfer ◽  
C. Urich ◽  
W. Rauch

In environmental engineering, identification of problems and their solutions as well as the identification of the relevant processes involved is often done by means of case study analyses. By researching the operation of urban drainage and water distribution systems, this methodology is suited to evaluate new technologies, strategies or measures with regard to their impact on the overall processes. However, data availability is often limited and data collection and the development of new models are both costly and time consuming. Hence, new technologies, strategies or measures can only be tested on a limited number of case studies. In several environmental disciplines a few virtual case studies have been manually developed to provide data for research tasks and these are repeatedly used in different research projects. Efforts have also been invested in tackling limited data availability with the algorithmic generation of virtual case studies having constant or varying boundary conditions. The data provided by such tools is nevertheless only available for a certain instance in time. With DynaVIBe (Dynamic Virtual Infrastructure Benchmarking), numerous virtual case studies are algorithmically generated with a temporal development of the urban structure (population and land use model) and infrastructure. This provides a methodology that allows for the analysis of future scenarios on a spatio-temporal city scale. By linking a population model with DynaVIBe's infrastructure models, socio-economics impacts on infrastructure and system coherences can be investigated. The problematic of limited case study data is solved by the algorithmic generation of an unlimited number of virtual case studies, which are dynamic over time. Additionally, this methodology can also be applied on real world data for probabilistic future scenario analysis.


2017 ◽  
Vol 33 (S1) ◽  
pp. 202-203
Author(s):  
Amr Makady ◽  
Heather Stegenga ◽  
Alexandre Joyeux ◽  
Michael Lees ◽  
Pall Jonsson

INTRODUCTION:The Innovative Medicines Initiative, IMI-GetReal project aimed to explore incorporation of robust methods for real-world data (RWD) collection and synthesis earlier in the medicines development process, both by pharmaceutical companies and healthcare decision makers. The focus was on the potential use of RWD, alone or in combination with randomized controlled trials (RCTs), to demonstrate effectiveness of new interventions. Four case studies were conducted in multiple disease areas to examine methods for predicting drug effectiveness and the perspectives of different stakeholders on these methods. This study aimed to identify practical obstacles in accessing and using RWD and RCT data for effectiveness research conducted as part of these case studies.METHODS:Qualitative content analysis was conducted to identify and characterize key issues relating to accessing and analysing study data from external sources, both RWD and RCTs.RESULTS:Accessing RWD from registries proved difficult due to multiple reasons, including: complex and non-transparent application procedures, resistance from registry owners to discuss applications and datasets not being research-ready within project timeframes. There were also issues with the RWD eventually accessed, including a lack of individual participant data (IPD) and incomplete data. Where access to IPD from RCTs was obtainable, there were restrictions imposed on how it could be used. For example, it could not be used to target analysis on an individual product, but rather explore methodologies for data synthesis in a product-anonymised setting. This condition encouraged additional data sharing by other stakeholders.CONCLUSIONS:Despite the collaborative, multi-stakeholder nature of IMI-GetReal and proper disclosures with data owners, access to data proved challenging. Such barriers to data accessibility can delay effectiveness research, restrict opportunities for the development of methods incorporating RWD and diminish the potential use of RWD in decision making. Where data is intended to be used for this purpose, sufficient attention should be paid to these potential barriers.


2011 ◽  
Vol 11 (24) ◽  
pp. 12973-13000 ◽  
Author(s):  
S. P. Urbanski ◽  
W. M. Hao ◽  
B. Nordgren

Abstract. Biomass burning emission inventories serve as critical input for atmospheric chemical transport models that are used to understand the role of biomass fires in the chemical composition of the atmosphere, air quality, and the climate system. Significant progress has been achieved in the development of regional and global biomass burning emission inventories over the past decade using satellite remote sensing technology for fire detection and burned area mapping. However, agreement among biomass burning emission inventories is frequently poor. Furthermore, the uncertainties of the emission estimates are typically not well characterized, particularly at the spatio-temporal scales pertinent to regional air quality modeling. We present the Wildland Fire Emission Inventory (WFEI), a high resolution model for non-agricultural open biomass burning (hereafter referred to as wildland fires, WF) in the contiguous United States (CONUS). The model combines observations from the MODerate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua satellites, meteorological analyses, fuel loading maps, an emission factor database, and fuel condition and fuel consumption models to estimate emissions from WF. WFEI was used to estimate emissions of CO (ECO) and PM2.5 (EPM2.5) for the western United States from 2003–2008. The uncertainties in the inventory estimates of ECO and EPM2.5 (uECO and uEPM2.5, respectively) have been explored across spatial and temporal scales relevant to regional and global modeling applications. In order to evaluate the uncertainty in our emission estimates across multiple scales we used a figure of merit, the half mass uncertainty, ũEX (where X = CO or PM2.5), defined such that for a given aggregation level 50% of total emissions occurred from elements with uEX ũEX. The sensitivity of the WFEI estimates of ECO and EPM2.5 to uncertainties in mapped fuel loading, fuel consumption, burned area and emission factors have also been examined. The estimated annual, domain wide ECO ranged from 436 Gg yr−1 in 2004 to 3107 Gg yr−1 in 2007. The extremes in estimated annual, domain wide EPM2.5 were 65 Gg yr−1 in 2004 and 454 Gg yr−1 in 2007. Annual WF emissions were a significant share of total emissions from non-WF sources (agriculture, dust, non-WF fire, fuel combustion, industrial processes, transportation, solvent, and miscellaneous) in the western United States as estimated in a national emission inventory. In the peak fire year of 2007, WF emissions were ~20% of total (WF + non-WF) CO emissions and ~39% of total PM2.5 emissions. During the months with the greatest fire activity, WF accounted for the majority of total CO and PM2.5 emitted across the study region. Uncertainties in annual, domain wide emissions was 28% to 51% for CO and 40% to 65% for PM2.5. Sensitivity of ũECO and ũEPM2.5 to the emission model components depended on scale. At scales relevant to regional modeling applications (Δx = 10 km, Δt = 1 day) WFEI estimates 50% of total ECO with an uncertainty <133% and half of total EPM2.5 with an uncertainty <146%. ũECO and ũEPM2.5 are reduced by more than half at the scale of global modeling applications (Δ x = 100 km, Δ t = 30 day) where 50% of total emissions are estimated with an uncertainty <50% for CO and <64% for PM2.5. Uncertainties in the estimates of burned area drives the emission uncertainties at regional scales. At global scales ũECO is most sensitive to uncertainties in the fuel load consumed while the uncertainty in the emission factor for PM2.5 plays the dominant role in ũEPM2.5. Our analysis indicates that the large scale aggregate uncertainties (e.g. the uncertainty in annual CO emitted for CONUS) typically reported for biomass burning emission inventories may not be appropriate for evaluating and interpreting results of regional scale modeling applications that employ the emission estimates. When feasible, biomass burning emission inventories should be evaluated and reported across the scales for which they are intended to be used.


2019 ◽  
Vol 6 (2) ◽  
pp. 153-164
Author(s):  
Peter Wiltshier

Purpose Concepts of health and wellbeing have long been conceived as relevant to leisure, recreation and rejuvenation. These are now conceived as being necessary and useful as potential measures of success in community development and in that subset of leisure and recreation pursuits that is designated as tourism at a destination. The paper aims to discuss this issue. Design/methodology/approach A post-modern approach to development of community and markers of sustainable development more-or-less correspond to sustainable development goals (there are 17) that often overlay the concepts of good health and wellbeing that concern all stakeholders. Findings This paper encompasses best practice experiences from two case studies conducted in a tourism “hot spot” in the environs of the first National Park established in Derbyshire in the UK. There is some urgency about this topic as resources for community development are increasingly under pressure from local, central government and the expectation is now that local communities take full responsibility for that development. An inter-disciplinary approach using concepts of health and wellbeing is recommended. Originality/value Wellbeing may demand a greater allocation of scarce resources in an era of self-determination, bottom-up and locally sourced community aspiring to become, or remain, a destination of choice. Two case studies’ outcomes in this development are presented with a special focus on creation of a repository for the know-how and know what of the learning acquired.


2017 ◽  
Author(s):  
Lei Zhang ◽  
Tianliang Zhao ◽  
Sunling Gong ◽  
Shaofei Kong ◽  
Lili Tang ◽  
...  

Abstract. Air pollutant emissions play a determinant role in deteriorating air quality. However, an uncertainty in emission inventories is still the key problem for modeling air pollution. In this study, an updated emission inventory of coal-fired power plants (UEIPP) based on online monitoring data in Jiangsu province of East China for the year of 2012 was implemented in the widely used Multi-resolution Emission Inventory for China (MEIC). By employing the Weather Research and Forecasting Model with Chemistry (WRF-Chem), two simulations were executed to assess the atmospheric environmental change by using the original MEIC emission inventory and the MEIC inventory with the UEIPP. A synthetic analysis shows that (1) compared to the power emissions of MEIC, PM2.5, PM10, SO2 and NOx were lower, and CO, black carbon (BC), organic carbon (OC) and NMVOCs were higher in the UEIPP, reflecting a large discrepancy in the power emissions over East China; (2) In accordance with the changes of UEIPP, the modeled concentrations were reduced for SO2 and NO2, and increased for most areas of primary OC, BC and CO, whose concentrations in atmosphere are highly dependent on emission changes. (3) Interestingly, when the UEIPP was used, the atmospheric oxidizing capacity significantly reinforced, reflecting by increased oxidizing agents, e.g. O3 and OH, thus directly strengthened the chemical production from SO2 and NOx to sulfate and nitrate, which offset the reduction of primary PM2.5 emissions especially in the haze days. This study indicated the importance of updating air pollutant emission inventories in simulating the complex atmospheric environment changes with the implications on air quality and environmental changes.


2006 ◽  
Vol 6 (12) ◽  
pp. 4287-4309 ◽  
Author(s):  
A. de Meij ◽  
M. Krol ◽  
F. Dentener ◽  
E. Vignati ◽  
C. Cuvelier ◽  
...  

Abstract. The sensitivity to two different emission inventories, injection altitude and temporal variations of anthropogenic emissions in aerosol modelling is studied, using the two way nested global transport chemistry model TM5 focussing on Europe in June and December 2000. The simulations of gas and aerosol concentrations and aerosol optical depth (AOD) with the EMEP and AEROCOM emission inventories are compared with EMEP gas and aerosol surface based measurements, AERONET sun photometers retrievals and MODIS satellite data. For the aerosol precursor gases SO2 and NOx in both months the model results calculated with the EMEP inventory agree better (overestimated by a factor 1.3 for both SO2 and NOx) with the EMEP measurements than the simulation with the AEROCOM inventory (overestimated by a factor 2.4 and 1.9, respectively). Besides the differences in total emissions between the two inventories, an important role is also played by the vertical distribution of SO2 and NOx emissions in understanding the differences between the EMEP and AEROCOM inventories. In December NOx and SO2 from both simulations agree within 50% with observations. In June SO4= evaluated with the EMEP emission inventory agrees slightly better with surface observations than the AEROCOM simulation, whereas in December the use of both inventories results in an underestimate of SO4 with a factor 2. Nitrate aerosol measured in summer is not reliable, however in December nitrate aerosol calculations with the EMEP and AEROCOM emissions agree with 30%, and 60%, respectively with the filter measurements. Differences are caused by the total emissions and the temporal distribution of the aerosol precursor gases NOx and NH3. Despite these differences, we show that the column integrated AOD is less sensitive to the underlying emission inventories. Calculated AOD values with both emission inventories underestimate the observed AERONET AOD values by 20–30%, whereas a case study using MODIS data shows a high spatial agreement. Our evaluation of the role of temporal distribution of anthropogenic emissions on aerosol calculations shows that the daily and weekly temporal distributions of the emissions are only important for NOx, NH3 and aerosol nitrate. However, for all aerosol species SO4=, NH4+, POM, BC, as well as for AOD, the seasonal temporal variations used in the emission inventory are important. Our study shows the value of including at least seasonal information on anthropogenic emissions, although from a comparison with a range of measurements it is often difficult to firmly identify the superiority of specific emission inventories, since other modelling uncertainties, e.g. related to transport, aerosol removal, water uptake, and model resolution, play a dominant role.


2020 ◽  
Author(s):  
Kieran Wood ◽  
Dean Connor ◽  
Sevda Groen ◽  
Dave Smith ◽  
Sam White ◽  
...  

&lt;p&gt;Unoccupied Aerial Systems (UAS) are ideal tools for responding to nuclear incidents where large outdoor areas have become contaminated with a radiological hazard. They are advantageous because rapid response radiation surveys can be conducted while the human operator remains at a safe distance and avoids direct contamination of the platform. During fieldwork within the Chernobyl Exclusion Zone (Ukraine), an airborne platform was equipped with a GNSS enabled gamma spectrometer and used to survey an area surrounding a known highly contaminated building (a &amp;#8216;hot-spot&amp;#8217;), resulting in a radiation intensity map. The detected radiation pattern, however, was &amp;#8216;blurred&amp;#8217; since the intensity recorded at any point counted nadir emissions, but also emissions from all sources within line-of-sight; The &amp;#8216;hot-spot&amp;#8217; had an influence far outside its ground footprint. Methods exist to correct for errors introduced by varying terrain altitude, however, they do not remove the unwanted blurring. Hence, small point sources appear as broad regions of contamination which is entirely an artefact of the measurement process. The effect is further accentuated with increasing height above ground hence understanding and correcting for this phenomenon is particularly relevant to data collected using UAS. Here, we present a novel algorithm to refine the detected pattern to more accurately recover the ground-truth.&lt;/p&gt;&lt;p&gt;A forward model of the system is created which describes the relationship between the unknown ground-truth and the aerial measurements. Gamma ray emissions from a point source obey the inverse square law of spatial dilution and have an exponential attenuation in air. To model both effects, geometric information of the scene is required and is provided by the geotagged spectrometer data and photogrammetrically processed DEMs of the surveyed terrain. The resulting model is hyper-cube of linear equations, where every aerial measurement point is assumed to be influenced by every ground sample point. By finding the inverse solution of this system, the ground-truth radiation pattern is estimated in more detail. The Kaczmarz method is advantageous because a large system of equations can be broken down into smaller sub-routines and solved iteratively. A caveat is that the solution might settle to false positive. The refinement algorithm will be presented with simulated results, controlled laboratory experiments using robotic arms and sealed radioactive sources, and finally applied to a real-world data set collected in the Chernobyl Exclusion Zone.&lt;/p&gt;


2017 ◽  
Vol 17 (16) ◽  
pp. 10125-10141 ◽  
Author(s):  
Jieying Ding ◽  
Kazuyuki Miyazaki ◽  
Ronald Johannes van der A ◽  
Bas Mijling ◽  
Jun-ichi Kurokawa ◽  
...  

Abstract. We compare nine emission inventories of nitrogen oxides including four satellite-derived NOx inventories and the following bottom-up inventories for East Asia: REAS (Regional Emission inventory in ASia), MEIC (Multi-resolution Emission Inventory for China), CAPSS (Clean Air Policy Support System) and EDGAR (Emissions Database for Global Atmospheric Research). Two of the satellite-derived inventories are estimated by using the DECSO (Daily Emission derived Constrained by Satellite Observations) algorithm, which is based on an extended Kalman filter applied to observations from OMI or from GOME-2. The other two are derived with the EnKF algorithm, which is based on an ensemble Kalman filter applied to observations of multiple species using either the chemical transport model CHASER and MIROC-chem. The temporal behaviour and spatial distribution of the inventories are compared on a national and regional scale. A distinction is also made between urban and rural areas. The intercomparison of all inventories shows good agreement in total NOx emissions over mainland China, especially for trends, with an average bias of about 20 % for yearly emissions. All the inventories show the typical emission reduction of 10 % during the Chinese New Year and a peak in December. Satellite-derived approaches using OMI show a summer peak due to strong emissions from soil and biomass burning in this season. Biases in NOx emissions and uncertainties in temporal variability increase quickly when the spatial scale decreases. The analyses of the differences show the importance of using observations from multiple instruments and a high spatial resolution model for the satellite-derived inventories, while for bottom-up inventories, accurate emission factors and activity information are required. The advantage of the satellite-derived approach is that the emissions are soon available after observation, while the strength of the bottom-up inventories is that they include detailed information of emissions for each source category.


Sign in / Sign up

Export Citation Format

Share Document