Development of a Synergistic Damage Mechanics-Based Model for Predicting Multiaxial Effects in Progressive Failure of Composite Structures

Author(s):  
John Montesano ◽  
Chandra Veer Singh

A major benefit of advanced fiber-reinforced polymer composites is that they can be tailored and optimized to suit a particular structural application by orienting the reinforcing fibers along multiple directions. For practical load-bearing structural components manufactured from multidirectional laminates, predicting their mechanical behaviour is quite complex. This is specifically the case for progressive failure analysis of these materials when subjected to quasi-static or fatigue loading since local cracks will initiate and evolve in multiple directions simultaneously. The difficulty of the problem increases further when these laminates are subjected to complex multiaxial stress states. This is due to the fact that the multidirectional crack state will be subjected to additional crack driving stress components, which will ultimately alter the crack evolution characteristics. A synergistic damage mechanics (SDM) methodology has recently been developed to address these issues in progressive damage analyses of composite laminates containing multiple damage modes and subjected to uniaxial loading [1]. By combining micromechanics and continuum damage mechanics, the SDM methodology provides a rigorous and practical tool for accurate prediction of progressive damage behaviour in composite structures. This is essential for accurately predicting the integrity and durability of practical structures, which will lead to safer and more efficient designs.

2018 ◽  
Author(s):  
DC Pham

This work presents a comparative study for the progressive damage analysis of double-notched glass/epoxy composites with layups [90/0]s and [45/90/-45/0]s. The material property degradation method (MPDM) is used to model the intra-lamina failure whereas cohesive elements (CE) are employed to account for the delamination at the interfaces. Different fracture mechanics-based and continuum damage mechanics-based failure theories are considered in the MPDM-CE approach and a comparative study of these failure theories is presented. The predictions are compared with the experimental results reported by Hallett and Wisnom [2006]. Reasonably good agreement between experiment results and simulation results is obtained, showing that the MPDM-CE approach can effectively predict the progressive failure in double-notched glass/epoxy composite laminates.


2012 ◽  
Vol 498 ◽  
pp. 42-54 ◽  
Author(s):  
S. Benbelaid ◽  
B. Bezzazi ◽  
A. Bezazi

This paper considers damage development mechanisms in cross-ply laminates using an accurate numerical model. Under static three points bending, two modes of damage progression in cross-ply laminates are predominated: transverse cracking and delamination. However, this second mode of damage is not accounted in our numerical model. After a general review of experimental approaches of observed behavior of laminates, the focus is laid on predicting laminate behavior based on continuum damage mechanics. In this study, a continuum damage model based on ply failure criteria is presented, which is initially proposed by Ladevèze. To reveal the effect of different stacking sequence of the laminate; such as thickness and the interior or exterior disposition of the 0° and 90° oriented layers in the laminate, an equivalent damage accumulation which cover all ply failure mechanisms has been predicted. However, the solution algorithm using finite element analysis which implements progressive failure analysis is summarized. The results of the numerical computation have been justified by the previous published experimental observations of the authors.


2021 ◽  
Author(s):  
RYOMA AOKI ◽  
RYO HIGUCHI ◽  
TOMOHIRO YOKOZEKI

This study aims to conduct a fatigue simulation for predicting the stiffness degradation of thin-ply composite laminates with several ply thicknesses. For the simulation, a fatigue evolution model of intra-laminar damage in thin-ply composite laminates considering the effect of ply thickness was proposed. The intra-laminar damage evolution was modeled using the continuum damage mechanics model and the static and fatigue evolution law were formulated by relating the transverse crack density to the damage variable. The finite element simulation using the proposed model was conducted to predict the stiffness degradation of the laminates as a function of the number of loading cycles. The simulation results show that the experimental data can be reproduced by using the proposed fatigue model.


2012 ◽  
Vol 476-478 ◽  
pp. 583-586
Author(s):  
Yin Huan Yang

Failure prediction of laminated composites is performed by progressive failure analysis method. A modified form of Hashin’s failure criterion by Shokrieh is used to detect the failure, where a sudden degradation model is proposed to reduce engineering material constants. The numerical analysis of composite laminates is implemented in ANSYS Parametric Design Language (APDL) with commercial finite element codes ANSYS. The method can predict the initiation and propagation of local damage and response of laminated composite structures from initial loading and ultimate failure. The model has been validated by comparing numerical results with existing experimental results. And then failure analysis specimen fabricated from M40J/Ag80 and investigation on influence of stacking sequences and fiber orientations under in-plane compressive loading have been performed by the proposed model.


2013 ◽  
Vol 117 (1187) ◽  
pp. 71-85 ◽  
Author(s):  
W. Ji ◽  
A. M. Waas

AbstractThis paper is concerned with the development of a failure initiation and progressive failure analysis (PFA) method for advanced composite structures. The present PFA model is capable of predicting interactive out-of-plane and in-plane failure modes observed in fiber reinforced composite laminates including interlaminar behavior and matrix microdamage at the mesoscale. A probability analysis tool is coupled with the PFA to account for uncertainty in modelling parameters caused by material variability and manufacturing inconsistencies. The progressive damage response of a laminated composite panel with an initial delamination is studied and used to demonstrate the PFA modelling framework that is presented here.


2017 ◽  
Vol 36 (20) ◽  
pp. 1473-1486 ◽  
Author(s):  
Song Zhou ◽  
Yi Sun ◽  
Boyang Chen ◽  
Tong-Earn Tay

The sizes effects on the strengths of open-hole fibre-reinforced composite laminates subjected to tensile loading (OHT) have been investigated widely. However, little attention has been paid to the influence of material orthotropy. This paper presents a progressive damage model for the model failure of notched laminates under tensile loading based on continuum damage mechanics and cohesive elements. The effects of orthotropy on the failure of notched laminates with seven different ply sequences are investigated by our proposed model. The prediction results adopting the Hoffman and Pinho failure criterions to determine matrix damage initiation are compared with the results of experiments. Our proposed models are able to predict the strong influence of orthotropy on strengths of open-hole laminate under tension, and model using Pinho criterion can predict the open-hole tension strength most accurately.


Sign in / Sign up

Export Citation Format

Share Document