scholarly journals Optimization of Cultural Conditions for Solid State Fermentation of Amylase Production by Aspergillus species

2013 ◽  
Vol 14 (1) ◽  
pp. 67-74
Author(s):  
Bina Gautam ◽  
Tika B Karki ◽  
Om Prakash Panta

Amylase is an amylolytic enzyme used in food industry which is generally produced by Aspergillus spp. under solid state fermentation. The present study is concerned with the isolation, screening and selection of suitable strains of Aspergillus spp. and optimization of cultural conditions for the biosynthesis of amylase. Rice and wheat brans were used as substrates which are readily available inexpensive raw materials for amylase production. From 85 samples of rice and wheat grains, 55 colonies obtained on potato dextrose agar (PDA) were suspected to be Aspergillus oryzae and only 35 colonies possessed the morphological characteristics similar to that of A. oryzae indicating the isolates were most likely the strains of A. oryzae. Of all the fungal isolates of Aspergillus spps., Asp.31 gave maximum production of amylase (720.782 IUgds-1) in solid state fermentation media. This strain was selected as a parental strain for optimization for cultural conditions. The obtained data were analyzed using SPSS- 11.5 program. Of all the substrates (rice bran, wheat bran and their mixture), rice bran was the best for producing amylase of highest activity 611.614 IUgds-1.The highest enzyme activity of 698.749 IUgds-1 was observed at 50% initial moisture level of the substrate. The optimum temperature was 25°C for producing the crude amylase enzyme with amylase activity of 577.757 IUgds-1. Nepal Journal of Science and Technology Vol. 14, No. 1 (2013) 67-74 DOI: http://dx.doi.org/10.3126/njst.v14i1.8924

2020 ◽  
Vol 21 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Chandrasai Potla Durthi ◽  
Madhuri Pola ◽  
Satish Babu Rajulapati ◽  
Anand Kishore Kola

Aim & objective: To review the applications and production studies of reported antileukemic drug L-glutaminase under Solid-state Fermentation (SSF). Overview: An amidohydrolase that gained economic importance because of its wide range of applications in the pharmaceutical industry, as well as the food industry, is L-glutaminase. The medical applications utilized it as an anti-tumor agent as well as an antiretroviral agent. L-glutaminase is employed in the food industry as an acrylamide degradation agent, as a flavor enhancer and for the synthesis of theanine. Another application includes its use in hybridoma technology as a biosensing agent. Because of its diverse applications, scientists are now focusing on enhancing the production and optimization of L-glutaminase from various sources by both Solid-state Fermentation (SSF) and submerged fermentation studies. Of both types of fermentation processes, SSF has gained importance because of its minimal cost and energy requirement. L-glutaminase can be produced by SSF from both bacteria and fungi. Single-factor studies, as well as multi-level optimization studies, were employed to enhance L-glutaminase production. It was concluded that L-glutaminase activity achieved by SSF was 1690 U/g using wheat bran and Bengal gram husk by applying feed-forward artificial neural network and genetic algorithm. The highest L-glutaminase activity achieved under SSF was 3300 U/gds from Bacillus sp., by mixture design. Purification and kinetics studies were also reported to find the molecular weight as well as the stability of L-glutaminase. Conclusion: The current review is focused on the production of L-glutaminase by SSF from both bacteria and fungi. It was concluded from reported literature that optimization studies enhanced L-glutaminase production. Researchers have also confirmed antileukemic and anti-tumor properties of the purified L-glutaminase on various cell lines.


2018 ◽  
Vol 22 (2) ◽  
pp. 111
Author(s):  
Alfi Asben ◽  
Deivy Andhika Permata

Angka pigment is one of food colorants that safe to used. It can be produced by subtrate that contain of sago hampas. The objective of the research was to get the appropriate of sago hampas particle size to produce the angkak pigment. The steps to produce of angkak pigment were (a) Preparation of raw materials (sago hampas and rice flour substrate with comparison 1:1 (12.5 : 12.5). This research used  three treatments of sago hampas particle size (40-60 mesh, 60-80 mesh, and >80 mesh) with 3 replications, (b) Preparation of Monascus purpureus culture, (c) Solid state fermentation to produce angkak pigment using M. purpureus. The results of the research showed that the substrate with hampas sago particle size 40-60 mesh produced  the best angkak pigment. The angkak pigment obtain the highest color intensity on λ 400 nm, λ 470 nm, λ 500 nm were 6004, 5110 and 3650 respectively, the highest used starch, antioxidant, toxicity, lovastatin and spore of  M.  purpureus were 11.07%, 45.95%, 1719.86 (LC50), 79 ppm, and 3.4 x 103 CPU/g respectively.


2018 ◽  
Vol 37 (2) ◽  
pp. 149-156 ◽  
Author(s):  
C. Marzo ◽  
A.B. Díaz ◽  
I. Caro ◽  
A. Blandino

Nowadays, significant amounts of agro-industrial wastes are discarded by industries; however, they represent interesting raw materials for the production of high-added value products. In this regard, orange peels (ORA) and exhausted sugar beet cossettes (ESBC) have turned out to be promising raw materials for hydrolytic enzymes production by solid state fermentation (SSF) and also a source of sugars which could be fermented to different high-added value products. The maximum activities of xylanase and exo-polygalacturonase (exo-PG) measured in the enzymatic extracts obtained after the SSF of ORA were 31,000 U·kg-1 and 17,600 U·kg-1, respectively; while for ESBC the maximum values reached were 35,000 U·kg-1 and 28,000 U·kg-1, respectively. The enzymatic extracts obtained in the SSF experiments were also employed for the hydrolysis of ORA and ESBC. Furthermore, it was found that extracts obtained from SSF of ORA, supplemented with commercial cellulase, were more efficient for the hydrolysis of ORA and ESBC than a commercial enzyme cocktail typically used for this purpose. In this case, maximum reducing sugars concentrations of 57 and 47 g·L-1 were measured after the enzymatic hydrolysis of ESBC and ORA, respectively.


2020 ◽  
pp. 405-414
Author(s):  
Veronika Valentinovna Tarnopol’skaya ◽  
Tat'yana Vasil'yevna Ryazanova ◽  
Natal'ya Yur'yevna Demidenko ◽  
Oksana Nikolayevna Eryomenko

A technology for pilot production of feed products via microbiological conversion of plant raw materials (mixed substrate of pine sawdust and vegetative part of Jerusalem artichoke) by Plerotus ostreatus PO-4.1 and Pleurotus djamor PD-3.2 strains is developed. The technology includes hydrodynamic activation of substrate at the seed stock production stage. The overall technology includes three key stages: submerged fermentation of pure cultures of production strains; submerged-solid phase fermentation of hydrodynamicly activated plant raw materials for seed stock production; solid-state fermentation of mechanically ground plant substrate for feed products production. A successful approbation of submerged-solid state fermentation of production strains on media containing 3% of hydrodynamicly activated raw materials allowed for obtaining seed stock with 14.5 g/l yield of submerged mycelium biomass fully adopted for this type of substrate. Further use of this seed stock biomass at the solid state fermentation stage makes the overall process duration three times shorter compared to existing technologies for direct wood waste bioconversion. The pilot plant results show valuable practicability of plant raw material hydrodynamic activation with the purpose of enhancing its bioaccessibility with consequent increase in degree of microbiological conversion. The product of bioconversion contains 14–16% of protein, biofiber, vitamins and minerals and could be considered for successful use as feed by agricultural enterprises.


2018 ◽  
Vol 43 (3) ◽  
pp. 240-247 ◽  
Author(s):  
Nurullah Akcan

AbstractObjective:The aim of this work was to study the optimal cultivation conditions for β-galactosidase production byBacillus licheniformisATCC 12759.Materials and methods:The screening of β-galactosidase production fromB. licheniformisATCC 12759 was performed by solid state fermentation method on media rich with rice bran (RB). Different factors were tested for the optimization of β-galactosidase production.Results:Certain fermentation parameters involving incubation time, incubation temperature, inoculum level, moisture content, initial pH, agitation speed, size of fermentation medium and optimum temperature of β-galactosidase activity were studied separately. Maximal amount of β-galactosidase production was obtained when solid-state fermentation (SSF) was carried out using RB, having inoculum level 35%, moisture content of 20%, initial pH 7.5 at 37°C for 48 h.Conclusion:Results indicated that optimal fermentation conditions play a key role in the maximum production of β-galactosidase fromB. licheniformisATCC 12759. This study shows the potential of the studied enzymes to be promoting candidates for the degradation of lactose and production of important bioproducts.


Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 44 ◽  
Author(s):  
Omarini ◽  
Labuckas ◽  
Zunino ◽  
Pizzolitto ◽  
Fernández-Lahore ◽  
...  

Solid-state fermentation (SSF) of rice bran (RB) employing the edible fungus Pleurotus sapidus was investigated as a process strategy to improve the nutritional quality of this low-cost and abundant substrate. During fermentation, samples were withdrawn at different time intervals (4, 6, and 10 days) and further analyzed. Established methods were deployed to monitor the changes in nutritional composition (carbohydrates, proteins, ash, and lipids). Additionally, changes in fatty acid composition was studied as a function of culture progress. Results showed that the SSF of rice bran increased total carbohydrates from 36.6% to 50.2%, total proteins from 7.4% to 12.8%, and ash from 7.6% to 11.5%. However, the total lipid content was reduced from 48.5% to 27.8%. The fatty acid (FA) composition of RB included mainly oleic, linoleic, and palmitic acids. Upon fermentation with P. sapidus, small differences were found: linoleic acid and oleic acid content were increased by 0.4% and 1.1%, respectively, while palmitic acid content was reduced by 0.8%. This study demonstrated an improvement in the nutritional quality of RB after fermentation with P. sapidus, since protein, carbohydrates, minerals, and specific FA components were increased. As a whole, our results indicate that fermented rice bran could be used as a high-quality animal feed supplement.


2005 ◽  
Vol 36 (7) ◽  
pp. 900-902 ◽  
Author(s):  
Yovita S.P. Rahardjo ◽  
Frans J. Weber ◽  
Sebastiaan Haemers ◽  
Johannes Tramper ◽  
Arjen Rinzema

Sign in / Sign up

Export Citation Format

Share Document