Influence of conductive PEDOT:PSS in a hard tissue scaffold: In vitro and in vivo study

2019 ◽  
Vol 34 (6) ◽  
pp. 436-441 ◽  
Author(s):  
N Fani ◽  
M Hajinasrollah ◽  
MH Asghari Vostikolaee ◽  
M Baghaban Eslaminejad ◽  
F Mashhadiabbas ◽  
...  

The presence of a conductive component in bone scaffolds can be helpful in facilitating the intracellular electrical signaling among cells as well as improving bone healing when electromagnetic stimulation is applied. In this study, poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) as a biocompatible conductive polymer was incorporated into a hard tissue scaffold made of gelatin (Gel) and bioactive glass. The in vitro results revealed that incorporation of an optimized amount of poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) into the scaffold composition enhanced cell viability more than four times after 14 days incubation, compared to the scaffold without poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate). The in vivo studies demonstrated the amount of new bone formation of Gel/bioactive glass/poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) scaffolds was significantly higher than the Gel/bioactive glass scaffolds.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Andressa V. B. Nogueira ◽  
Marjan Nokhbehsaim ◽  
Sema Tekin ◽  
Rafael S. de Molon ◽  
Luis C. Spolidorio ◽  
...  

Resistin, a proinflammatory adipokine, is elevated in many inflammatory diseases. However, little is known about its performance in periodontitis. The present study is aimed at evaluating resistin expression and synthesis in periodontal cells and tissues under inflammatory/microbial stress in addition to its effects on the periodontium. In vivo, 24 male rats were randomly divided into two groups: control and ligature-induced periodontal disease. After 6 and 12 days, animals were sacrificed to analyze gene expression of adipokines, bone loss, inflammation, and resistin synthesis. In vitro, human periodontal ligament (PDL) fibroblasts were used to evaluate the expression of resistin after inflammatory stimuli. In addition, PDL fibroblasts were exposed to resistin to evaluate its role on soft and hard tissue metabolism markers. The periodontitis group demonstrated significant bone loss, an increase in the number of inflammatory cells and vascular structures, an increase in resistin expression and synthesis, and a decrease in the expression of adiponectin, leptin, and its functional receptor. PDL fibroblasts showed a significant increase in resistin expression and synthesis in response to the inflammatory stimulus by IL-1β. Resistin induced an increase in cytokine expression and a decrease in the regulation of some hard tissue and matrix formation genes in PDL fibroblasts. These data indicate that resistin is produced by periodontal cells and tissues, and this effect is enhanced by inflammatory stimuli. Moreover, resistin seems to interfere with soft and hard tissue metabolism during periodontitis by reducing markers related to matrix formation and bone tissue.


2013 ◽  
Vol 8 (1) ◽  
pp. 18 ◽  
Author(s):  
Darryl A Dickerson ◽  
Tarik N Misk ◽  
David C Van Sickle ◽  
Gert J Breur ◽  
Eric A Nauman

2019 ◽  
Vol 13 (9) ◽  
pp. 1651-1663
Author(s):  
Luiz Felipe Cardoso Lehman ◽  
Mariana Saturnino Noronha ◽  
Ivana Márcia Alves Diniz ◽  
Rosangela Maria Ferreira Costa e Silva ◽  
Ângela Leão Andrade ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1846
Author(s):  
Nurshen Mutlu ◽  
Ana Maria Beltrán ◽  
Qaisar Nawaz ◽  
Martin Michálek ◽  
Aldo R. Boccaccini ◽  
...  

In this study, binary SiO2-CaO hollow mesoporous bioactive glass nanoparticles (HMBGNs) are prepared by combing selective etching and impregnation strategies. Spherical silica particles (SiO2 NPs) are used as hard cores to assemble cetyltrimethylammonium bromide (CTAB)/silica shells, which are later removed by selective etching to generate a hollow structure. After the removal of CTAB by calcination, the mesoporous shell of particles is formed. Calcium (Ca) is incorporated into the particles using impregnation by soaking the etched SiO2 NPs in calcium nitrate aqueous solution. The amount of incorporated Ca is tailorable by controlling the ratio of SiO2 NPs:calcium nitrate in the soaking solution. The produced HMBGNs are bioactive, as indicated by the rapid formation of hydroxyapatite on their surfaces after immersion in simulated body fluid. In a direct culture with MC3T3-E1 cells, HMBGNs were shown to exhibit concentration-dependent cytotoxicity and can stimulate osteogenic differentiation of MC3T3-E1 cells at concentrations of 1, 0.5, and 0.25 mg/mL. Our results indicate that the combination of selective etching and impregnation is a feasible approach to produce hierarchical HMBGNs. The produced hollow particles have potential in drug delivery and bone tissue regeneration applications, and should be further investigated in detailed in vitro and in vivo studies.


2018 ◽  
Vol 33 (7) ◽  
pp. 967-978 ◽  
Author(s):  
Saba Zahid ◽  
Abdul Samad Khan ◽  
Aqif Anwar Chaudhry ◽  
Sarah Ghafoor ◽  
Qurat Ul Ain ◽  
...  

Development of a guided occlusive biodegradable membrane with controlled morphology in order to restrict the ingrowth of epithelial cells is still a challenge in dental tissue engineering. A bilayer membrane with a non-porous upper layer (polyurethane) and porous lower layer (polycaprolactone and bioactive glass composite) with thermoelastic properties to sustain surgery treatment was developed by lyophilization. Morphology, porosity, and layers attachment were controlled by using the multi-solvent system. In vitro and in vivo biocompatibility, cell attachment, and cell proliferation were analyzed by immunohistochemistry and histology. The cell proliferation rate and cell attachment results showed good biocompatibility of both surfaces, though cell metabolic activity was better on the polycaprolactone-bioactive glass surface. Furthermore, the cells were viable, adhered, and proliferated well on the lower porous bioactive surface, while non-porous polyurethane surface demonstrated low cell attachment, which was deliberately designed and a pre-requisite for guided tissue regeneration/guided bone regeneration membranes. In addition, in vivo studies performed in a rat model for six weeks revealed good compatibility of membranes. Histological analysis (staining with hematoxylin and eosin) indicated no signs of inflammation or accumulation of host immune cells. These results suggested that the fabricated biocompatible bilayer membrane has the potential for use in periodontal tissue regeneration.


2008 ◽  
Vol 396-398 ◽  
pp. 671-674
Author(s):  
Viviane Gomide ◽  
Natália Ocarino ◽  
Rogéria Serakides ◽  
Maria de Fatima Leite ◽  
Marivalda Pereira

Bioactive glass/polymer hybrids are promising materials for biomedical applications because they combine the bioactivity of these bioceramics with the flexibility of polymers. In previous work hybrid foams with 50% bioactive glass and 50% polyvinyl alcohol (PVA) were prepared by the sol-gel process for application as scaffold for bone tissue engineering. In this work the hybrid samples were tested in osteoblast culture to evaluate adhesion and proliferation. Samples were also implanted subcutaneously in the dorsal region of adult rats. The hybrid 50% PVA/bioactive glass foam was chosen as the best scaffold in the composition range studied and it is a promising material for bone repair, providing a good environment for the adhesion and proliferation of osteoblasts in vitro. Concerning the in vivo studies we can assure that the “foreing body” reaction was moderate and that the presence of osteoid indicated bone matrix formation.


2019 ◽  
Vol 16 (6) ◽  
pp. 565-576 ◽  
Author(s):  
Xiangyun Jin ◽  
Dan Han ◽  
Jie Tao ◽  
Yinjun Huang ◽  
Zihui Zhou ◽  
...  

Background: In the field of bone tissue engineering, there has been an increasing interest in biomedical materials with both high angiogenic ability and osteogenic ability. Among various osteogenesis materials, bioactive borosilicate and borate glass scaffolds possess suitable degradation rate and mechanical strength, thus drawing many scholars’ interests and attention. Objective: In this study, we fabricated bioactive glass scaffolds composed of borosilicate 2B6Sr using the Template-Method and incorporated Dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug possessing good angiogenic ability, to improve bone regeneration. Methods: The in-vitro studies showed that porous borosilicate bioactive glass scaffolds released slowly, a steady amount of DMOG and stimulated the proliferation and osteogenic differentiation of human bone marrow stromal cells hBMSCs. Results: In-vivo studies showed that the borosilicate bioactive glass scaffolds could significantly promote new bone formation and neovascularization in rats’ calvarial bone defects. Conclusion: These results indicated that DMOG-incorporated bioactive glass scaffold is a successful compound with excellent angiogenesis-osteogenesis ability, which has favorable clinical prospects.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 117 ◽  
Author(s):  
Werner Götz ◽  
Edda Tobiasch ◽  
Steffen Witzleben ◽  
Margit Schulze

Bioinspired stem cell-based hard tissue engineering includes numerous aspects: The synthesis and fabrication of appropriate scaffold materials, their analytical characterization, and guided osteogenesis using the sustained release of osteoinducing and/or osteoconducting drugs for mesenchymal stem cell differentiation, growth, and proliferation. Here, the effect of silicon- and silicate-containing materials on osteogenesis at the molecular level has been a particular focus within the last decade. This review summarizes recently published scientific results, including material developments and analysis, with a special focus on silicon hybrid bone composites. First, the sources, bioavailability, and functions of silicon on various tissues are discussed. The second focus is on the effects of calcium-silicate biomineralization and corresponding analytical methods in investigating osteogenesis and bone formation. Finally, recent developments in the manufacturing of Si-containing scaffolds are discussed, including in vitro and in vivo studies, as well as recently filed patents that focus on the influence of silicon on hard tissue formation.


Sign in / Sign up

Export Citation Format

Share Document