scholarly journals Ventilated Patients With COVID-19 Show Airflow Obstruction

2021 ◽  
pp. 088506662110006
Author(s):  
Vikas S. Koppurapu ◽  
Maksym Puliaiev ◽  
Kevin C. Doerschug ◽  
Gregory A. Schmidt

Objective: Many patients with coronavirus disease 2019 (COVID-19) need mechanical ventilation secondary to acute respiratory distress syndrome. Information on the respiratory system mechanical characteristics of this disease is limited. The aim of this study is to describe the respiratory system mechanical properties of ventilated COVID-19 patients. Design, Setting, and Patients: Patients consecutively admitted to the medical intensive care unit at the University of Iowa Hospitals and Clinics in Iowa City, USA, from April 19 to May 1, 2020, were prospectively studied; final date of follow-up was May 1, 2020. Measurements: At the time of first patient contact, ventilator information was collected including mode, settings, peak airway pressure, plateau pressure, and total positive end expiratory pressure. Indices of airflow resistance and respiratory system compliance were calculated and analyzed. Main Results: The mean age of the patients was 58 years. 6 out of 12 (50%) patients were female. Of the 21 laboratory-confirmed COVID-19 patients on invasive mechanical ventilation, 9 patients who were actively breathing on the ventilator were excluded. All the patients included were on volume-control mode. Mean [±standard deviation] ventilator indices were: resistive pressure 19 [±4] cmH2O, airway resistance 20 [±4] cmH2O/L/s, and respiratory system static compliance 39 [±16] ml/cmH2O. These values are consistent with abnormally elevated resistance to airflow and reduced respiratory system compliance. Analysis of flow waveform graphics revealed a pattern consistent with airflow obstruction in all patients. Conclusions: Severe respiratory failure due to COVID-19 is regularly associated with airflow obstruction.

2017 ◽  
Vol 55 (10) ◽  
pp. 1819-1828 ◽  
Author(s):  
Gaetano Perchiazzi ◽  
Christian Rylander ◽  
Mariangela Pellegrini ◽  
Anders Larsson ◽  
Göran Hedenstierna

2021 ◽  
Vol 8 (2) ◽  
pp. 67-74
Author(s):  
Rachel L. Choron ◽  
Stephen A. Iacono ◽  
Alexander Cong ◽  
Christopher G. Bargoud ◽  
Amanda L. Teichman ◽  
...  

Background: Recent literature suggests respiratory system compliance (Crs) based phenotypes exist among COVID-19 ARDS patients. We sought to determine whether these phenotypes exist and whether Crs predicts mortality. Methods: A retrospective observational cohort study of 111 COVID-19 ARDS patients admitted March 11-July 8, 2020. Crs was averaged for the first 72-hours of mechanical ventilation. Crs<30ml/cmH2O was defined as poor Crs(phenotype-H) whereas Crs≥30ml/cmH2O as preserved Crs(phenotype-L). Results: 111 COVID-19 ARDS patients were included, 40 phenotype-H and 71 phenotype-L. Both the mean PaO2/FiO2 ratio for the first 72-hours of mechanical ventilation and the PaO2/FiO2 ratio hospital nadir were lower in phenotype-H than L(115[IQR87] vs 165[87], p=0.016), (63[32] vs 75[59], p=0.026). There were no difference in characteristics, diagnostic studies, or complications between groups. Twenty-seven (67.5%) phenotype-H patients died vs 37(52.1%) phenotype-L(p=0.115). Multivariable regression did not reveal a mortality difference between phenotypes; however, a 2-fold mortality increase was noted in Crs<20 vs >50ml/cmH2O when analyzing ordinal Crs groups. Moving up one group level (ex. Crs30-39.9ml/cmH2O to 40-49.9ml/cmH2O), was marginally associated with 14% lower risk of death(RR=0.86, 95%CI 0.72, 1.01, p=0.065). This attenuated (RR=0.94, 95%CI 0.80, 1.11) when adjusting for pH nadir and PaO2/FiO2 ratio nadir. Conclusion: We identified a spectrum of Crs in COVID-19 ARDS similar to Crs distribution in non-COVID-19 ARDS. While we identified increasing mortality as Crs decreased, there was no specific threshold marking significantly different mortality based on phenotype. We therefore would not define COVID-19 ARDS patients by phenotypes-H or L and would not stray from traditional ARDS ventilator management strategies.


Author(s):  
Jan Hau Lee ◽  
Ira M. Cheifetz

This chapter on respiratory failure and mechanical ventilation provides essential information about how to support children with severe respiratory disorders. The authors discuss multiple modes of respiratory support, including high-flow nasal cannula oxygen, noninvasive ventilation with continuous positive airway pressure and bilevel positive airway pressure, as well as conventional, high-frequency, and alternative modes of invasive ventilation. The section on invasive mechanical ventilation includes key information regarding gas exchange goals, modes of ventilation, patient–ventilator interactions, ventilator parameters (including tidal volume, end-expiratory pressure, and peak plateau pressure), extubation readiness testing, and troubleshooting. The authors also provide the new consensus definition of pediatric acute respiratory distress syndrome. Also included are multiple figures and indispensable information on adjunctive therapies (inhaled nitric oxide, surfactant, prone positioning, and corticosteroids) and respiratory monitoring (including capnography and airway graphics analysis).


2019 ◽  
Vol 131 (3) ◽  
pp. 594-604 ◽  
Author(s):  
Giacomo Bellani ◽  
Alice Grassi ◽  
Simone Sosio ◽  
Stefano Gatti ◽  
Brian P. Kavanagh ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Driving pressure, the difference between plateau pressure and positive end-expiratory pressure (PEEP), is closely associated with increased mortality in patients with acute respiratory distress syndrome (ARDS). Although this relationship has been demonstrated during controlled mechanical ventilation, plateau pressure is often not measured during spontaneous breathing because of concerns about validity. The objective of the present study is to verify whether driving pressure and respiratory system compliance are independently associated with increased mortality during assisted ventilation (i.e., pressure support ventilation). Methods This is a retrospective cohort study conducted on 154 patients with ARDS in whom plateau pressure during the first three days of assisted ventilation was available. Associations between driving pressure, respiratory system compliance, and survival were assessed by univariable and multivariable analysis. In patients who underwent a computed tomography scan (n = 23) during the stage of assisted ventilation, the quantity of aerated lung was compared with respiratory system compliance measured on the same date. Results In contrast to controlled mechanical ventilation, plateau pressure during assisted ventilation was higher than the sum of PEEP and pressure support (peak pressure). Driving pressure was higher (11 [9–14] vs. 10 [8–11] cm H2O; P = 0.004); compliance was lower (40 [30–50] vs. 51 [42–61] ml · cm H2O-1; P &lt; 0.001); and peak pressure was similar, in nonsurvivors versus survivors. Lower respiratory system compliance (odds ratio, 0.92 [0.88–0.96]) and higher driving pressure (odds ratio, 1.34 [1.12–1.61]) were each independently associated with increased risk of death. Respiratory system compliance was correlated with the aerated lung volume (n = 23, r = 0.69, P &lt; 0.0001). Conclusions In patients with ARDS, plateau pressure, driving pressure, and respiratory system compliance can be measured during assisted ventilation, and both higher driving pressure and lower compliance are associated with increased mortality.


Author(s):  
O. A. Loskutov ◽  
I. A. Kuchynska ◽  
S. M. Nedashkivskyi ◽  
O. S. Demchenko

Mortality among patients with severe pneumonia and / or acute respiratory distress syndrome (ARDS) due to COVID-19 infection, who underwent mechanical ventilation (MV), is characterized by a fairly high frequency. However, despite the large number of patients receiving appropriate treatment, the question of choosing the optimal ventilation parameters remains poorly understood. In our article, we reviewed the available literature data on the indications for mechanical ventilation, parameters of MV, the need for prone-positioning of patients with ARDS caused by COVID-19 infection in intensive care units to identify unresolved issues.Despite the large number of publications about respiratory support in patients with severe coronavirus infection, there are only general principles regarding the indications for switching to invasive ventilation. Most authors identified the following clinical situations: progression of hypoxemia and / or respiratory failure but with constant oxygen support with increasing percentage of oxygen in the respiratory mixture, use of high-flow cannula or non-invasive ventilation for 1 hour without improvement; persistent hypercapnia, multiorgan failure, coma, high risk of aspiration, hemodynamic instability.According to most of the studies analyzed, the main components of the ventilation strategy should be based on the principles of pulmonary protective ventilation and include the use of low tidal volumes (Vt = 4-8 ml / kg of ideal body weight) and ventilation with plateau pressure Pplat <30 cm H2O (plateau pressure - air pressure measured after an inspiratory pause of 0.5 s). At the same time, many authors recommend using prone position and high levels of positive end-expiratory pressure (PEEP) compared to low levels in patients with ARDS on the background of COVID-19.The approach to invasive mechanical ventilation in ARDS caused by SARS-CoV-2 still requires further research and answers to a number of questions.


2019 ◽  
Vol 32 (7-8) ◽  
pp. 520 ◽  
Author(s):  
Maria Teresa Dionisio ◽  
Armanda Rebelo ◽  
Carla Pinto ◽  
Leonor Carvalho ◽  
José Farela Neves

Introduction: Invasive mechanical ventilation contributes to ventilator-induced diaphragmatic dysfunction, delaying extubation and increasing mortality in adults. Despite the possibility of having a higher impact in paediatrics, this dysfunction is not routinely monitored. Diaphragm ultrasound has been proposed as a safe and non-invasive technique for this purpose. The aim of this study was to describe the evolution of diaphragmatic morphology and functional measurements by ultrasound in ventilated children.Material and Methods: Prospective exploratory study. Children admitted to Paediatric Intensive Care Unit requiring mechanical ventilation > 48 hours were included. The diaphragmatic thickness, excursion and the thickening fraction were assessed by ultrasound.Results: Seventeen cases were included, with a median age of 42 months. Ten were male, seven had comorbidities and three in seventeen had malnutrition at admission. The median time under mechanical ventilation was seven days. The median of the initial and minimum diaphragmatic thickness was 2.3 mm and 1.9 mm, respectively, with a median decrease in thickness of 13% under pressure-regulated volume control. Diaphragmatic atrophy was observed in 14/17 cases. Differences in the median thickness variation were found between patients with sepsis and without (0.70 vs 0.25 mm; p = 0.019). During pressure support ventilation there was a tendency to increase diaphragmatic thickness and excursion. Extubation failure occurred for diaphragmatic thickening fraction ≤ 35%.Discussion: Under pressure-regulated volume control there was a tendency for a decrease in diaphragmatic thickness. In the pre-extubation stage under pressure support, there was a tendency for it to increase. These results suggest that, by titrating ventilation using physiological levels of inspiratory effort, we can reduce the diaphragmatic morphological changes associated with ventilation.Conclusion: The early recognition of diaphragmatic changes may encourage a targeted approach, namely titration of ventilation, in order to reduce ventilator-induced diaphragmatic dysfunction and its clinical repercussions.


Author(s):  
Shalu Gupta ◽  
Suresh K. Angurana ◽  
Virendra Kumar

AbstractThe novel coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is causing significant morbidity and mortality worldwide. The common presentations in children include involvement of respiratory system leading to pneumonia and acute respiratory distress syndrome, as well as multiorgan dysfunction syndrome and multisystem inflammatory syndrome in children (MIS-C). Pediatric COVID-19 is a milder disease as compared with the adults. Also, there is rise in MIS-C cases which is a hyperinflammatory condition temporally associated with SARS-CoV-2. Since respiratory system is predominantly involved, few of these critically ill children often require respiratory support which can range from simple oxygen delivery devices, high-flow nasal cannula (HFNC), noninvasive ventilation (NIV), invasive mechanical ventilation, and extracorporeal membrane oxygenation (ECMO). Most of the oxygen delivery devices and respiratory interventions generate aerosols and pose risk of transmission of virus to health care providers (HCPs). The use of HFNC and NIV should be limited to children with mild respiratory distress preferably in negative pressure rooms and with adequate personnel protective equipments (PPEs). However, there should be low thresholds for intubation and invasive mechanical ventilation in the event of clinical deterioration while on any respiratory support. The principle of providing respiratory support requires special droplet and air-borne precautions to limit exposure or transmission of virus to HCPs and at the same time ensuring safety of the patient.


2021 ◽  
Vol 2 (3) ◽  
pp. 73-78
Author(s):  
Robert Chatburn

The Four Truths 1. The truth of confusion 2. The truth of the origin of confusion 3. The truth of the cessation of confusion 4. The truth of the path leading to the cessation of confusion The 10-Fold Path 1. A breath is one cycle of positive flow (inspiration) and negative flow (expiration) defined in terms of the flow-time curve. 2. A breath is assisted if the ventilator does work on the patient. 3. A ventilator assists breathing using either pressure control or volume control based on the equation of motion for the respiratory system. 4. Breaths are classified by the criteria that trigger (start) and cycle (stop) inspiration 5. Trigger and cycle events can be initiated by the patient or the machine. 6. Breaths are classified as spontaneous or mandatory based on both the trigger and cycle events. 7. There are 3 breath sequences: Continuous mandatory ventilation (CMV), Intermittent Mandatory Ventilation (IMV), and Continuous Spontaneous Ventilation (CSV). 8. There are 5 basic ventilatory patterns: VC-CMV, VC-IMV, PC-CMV, PC-IMV, and PC-CSV: 9. Within each ventilatory pattern there are several variations that can be distinguished by their targeting scheme(s). 10. A mode of ventilation is classified according to its control variable, breath sequence, and targeting scheme(s). Keywords: Breath. Trigger, Cycle, Breath sequences, Ventilatory patterns, Mode of ventilation


Author(s):  
Alejandro J. Martinez Herrada ◽  
Michael A. Wien ◽  
Steven L. Shein ◽  
John K. Maher ◽  
Janine E. Zee-Cheng ◽  
...  

AbstractWe developed a novel airway clearance and lung recruitment maneuver for children with refractory unilateral atelectasis undergoing invasive mechanical ventilation. In this retrospective, single-center, proof of concept study, we describe the steps involved in this novel maneuver and evaluate its effectiveness in 15 patients through objective quantitation of changes in respiratory system compliance and in the degree of atelectasis assessed by a validated Modified Radiology Atelectasis Score. Compared with the premaneuver baseline, the median atelectasis score improved significantly following the maneuver (9 [7.5–10] vs. 1 [0–3.3], respectively, p < 0.01). Likewise, dynamic compliance was significantly higher following the maneuver (0.3 [0.32–0.44] vs. 0.61 [0.53–0.69] mL/kg/cm H2O, respectively, p < 0.01). No patients required a bronchoscopy. This simple and effective maneuver resulted in a significant improvement in the degree of atelectasis and dynamic compliance in this cohort of mechanically ventilated children with refractory unilateral atelectasis.


Sign in / Sign up

Export Citation Format

Share Document