Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering

2019 ◽  
Vol 33 (8) ◽  
pp. 1128-1144 ◽  
Author(s):  
Vahideh Raeisdasteh Hokmabad ◽  
Soodabeh Davaran ◽  
Marziyeh Aghazadeh ◽  
Reza Rahbarghazi ◽  
Roya Salehi ◽  
...  

The major challenge of tissue regeneration is to develop three dimensional scaffolds with suitable properties which would mimic the natural extracellular matrix to induce the adhesion, proliferation, and differentiation of cells. Several materials have been used for the preparation of the scaffolds for bone regeneration. In this study, novel ethyl cellulose-grafted-poly (ɛ-caprolactone) (EC-g-PCL)/alginate scaffolds with different contents of nano-hydroxyapatite were prepared by combining electrospinning and freeze-drying methods in order to provide nanofibrous/macroporous structures with good mechanical properties. For this aim, EC-g-PCL nanofibers were obtained with electrospinning, embedded layer-by-layer in alginate solutions containing nano-hydroxyapatite particles, and finally, these constructions were freeze-dried. The scaffolds possess highly porous structures with interconnected pore network. The swelling, porosity, and degradation characteristics of the EC-g-PCL/alginate scaffolds were decreased with the increase in nano-hydroxyapatite contents, whereas increases in the in-vitro biomineralization and mechanical strength were observed as the nano-hydroxyapatite content was increased. The cell response to EC-g-PCL/alginate scaffolds with/or without nano-hydroxyapatite was investigated using human dental pulp stem cells (hDPSCs). hDPSCs displayed a high adhesion, proliferation, and differentiation on nano-hydroxyapatite-incorporated EC-g-PCL/alginate scaffolds compared to pristine EC-g-PCL/alginate scaffold. Overall, these results suggested that the EC-g-PCL/alginate-HA scaffolds might have potential applications in bone tissue engineering.

2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


2018 ◽  
Vol 32 (10) ◽  
pp. 1392-1405 ◽  
Author(s):  
Ali Deniz Dalgic ◽  
Ammar Z. Alshemary ◽  
Ayşen Tezcaner ◽  
Dilek Keskin ◽  
Zafer Evis

In this study, novel graphene oxide–incorporated silicate-doped nano-hydroxyapatite composites were prepared and their potential use for bone tissue engineering was investigated by developing an electrospun poly(ε-caprolactone) scaffold. Nanocomposite groups were synthesized to have two different ratios of graphene oxide (2 and 4 wt%) to evaluate the effect of graphene oxide incorporation and groups with different silicate-doped nano-hydroxyapatite content was prepared to investigate optimum concentrations of both silicate-doped nano-hydroxyapatite and graphene oxide. Three-dimensional poly(ε-caprolactone) scaffolds were prepared by wet electrospinning and reinforced with silicate-doped nano-hydroxyapatite/graphene oxide nanocomposite groups to improve bone regeneration potency. Microstructural and chemical characteristics of the scaffolds were investigated by X-ray diffraction, Fourier transform infrared spectroscope and scanning electron microscopy techniques. Protein adsorption and desorption on material surfaces were studied using fetal bovine serum. Presence of graphene oxide in the scaffold, dramatically increased the protein adsorption with decreased desorption. In vitro biocompatibility studies were conducted using human osteosarcoma cell line (Saos-2). Electrospun scaffold group that was prepared with effective concentrations of silicate-doped nano-hydroxyapatite and graphene oxide particles (poly(ε-caprolactone) – 10% silicate-doped nano-hydroxyapatite – 4% graphene oxide) showed improved adhesion, spreading, proliferation and alkaline phosphatase activity compared to other scaffold groups.


2018 ◽  
pp. 461-475 ◽  
Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


2015 ◽  
Vol 24 (2) ◽  
pp. 123-133 ◽  
Author(s):  
Shuang Tong ◽  
Lei Xue ◽  
Da-peng XU ◽  
Zi-mei Liu ◽  
Xu-kai Wang

Bioimpacts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 73-85 ◽  
Author(s):  
Maryam Sadat Khoramgah ◽  
Javad Ranjbari ◽  
Hojjat-Allah Abbaszadeh ◽  
Fatemeh Sadat Tabatabaei Mirakabad ◽  
Shadie Hatami ◽  
...  

Introduction: Simulating hydrophobic-hydrophilic composite face with hierarchical porous and fibrous architectures of bone extracellular matrix (ECM) is a key aspect in bone tissue engineering. This study focused on the fabrication of new three-dimensional (3D) scaffolds containing polytetrafluoroethylene (PTFE), and polyvinyl alcohol (PVA), with and without graphene oxide (GO) nanoparticles using the chemical cross-linking and freeze-drying methods for bone tissue application. The effects of GO on physicochemical features and osteoinduction properties of the scaffolds were evaluated through an in vitro study. Methods: After synthesizing the GO nanoparticles, two types of 3D scaffolds, PTFE/PVA (PP) and PTFE/PVA/GO (PPG), were developed by cross-linking and freeze-drying methods. The physicochemical features of scaffolds were assessed and the interaction of the 3D scaffold types with human adipose mesenchymal stem cells (hADSCs) including attachment, proliferation, and differentiation to osteogenic like cells were investigated. Results: GO nanoparticles were successfully synthesized with no agglomeration. The blending of PTFE as a hydrophobic polymer with PVA polymer and GO nanoparticles (hydrophilic compartments) were successful. Two types of 3D scaffolds had nano topographical structures, good porosities, hydrophilic surfaces, thermal stabilities, good stiffness, as well as supporting the cell attachments, proliferation, and osteogenic differentiation. Notably, GO incorporating scaffolds provided a better milieu for cell behaviors. Conclusion: Novel multiscale porous nanofibrous 3D scaffolds made from PTFE/ PVA polymers with and without GO nanoparticles could be an ideal candidate for bone tissue engineering as a 3D template.


2004 ◽  
Vol 10 (9) ◽  
pp. 1536-1547 ◽  
Author(s):  
A. Wenger ◽  
A. Stahl ◽  
H. Weber ◽  
G. Finkenzeller ◽  
H.G. Augustin ◽  
...  

1999 ◽  
Vol 599 ◽  
Author(s):  
G. Spreitzer ◽  
J. Doctor ◽  
D. W. Wright

AbstractAdvances in the understanding of biomineralization processes in a variety of organisms have revealed the critical role of three-dimensional scaffolding architectures to create a highly functionalized surface. These complex matrices function on a variety of length scales ranging from the macromolecular (10–100 nm) to the cellular (1–10mm) and larger. One dominant structural motif found in many of these architectures is macromolecules containing antiparallel β-pleated sheets. These “hints” from Nature have lead to the iterative design and development of a novel multipurpose platform technology based on a self-assembled periodic peptide architecture for use in bone-tissue engineering. Combining molecular modeling, structural biochemistry and synthetic techniques, we have produced a β-sheet hollow tube peptide nanoassembly. Such a synthetic approach allows for the template's designed parameters of electrostatic, geometric and stereochemical complimentarily to match those of the desired biomineral. Consequently, these templates readily nucleate calcite. Future studies will investigate the in vitro osteoconductive and osteogenic properties of these templates.


2021 ◽  
Author(s):  
Sajad Bahrami ◽  
Nafiseh Baheiraei ◽  
Mostafa Shahrezaee

Abstract Variety of bone-related diseases and injures and limitations of traditional regeneration methods need to introduce new tissue substitutes. Tissue engineering and regeneration combined with nanomedicine can provide different natural or synthetic and combined scaffolds with bone mimicking properties for implant in the injured area. In this study, we synthesized collagen (Col) and reduced graphene oxide coated collagen (Col-rGO) scaffolds and evaluated their in vitro and in vivo effects on bone tissue repair. Col and Col-rGO scaffolds were synthesized by chemical crosslinking and freeze-drying methods. The surface topography, mechanical and chemical properties of scaffolds were characterized and showed three-dimensional (3D) porous scaffolds and successful coating of rGO on Col. rGO coating enhanced mechanical strength of Col-rGO scaffolds compared with Col scaffolds by 2.8 folds. Furthermore, Col-rGO scaffolds confirmed that graphene addition not only did not any cytotoxic effects but also enhanced human bone marrow-derived mesenchymal stem cells (hBMSCs) viability and proliferation with 3D adherence and expansion. Finally, scaffolds implantation into rabbit cranial bone defect for 12 weeks showed increased bone formation, confirmed by Hematoxylin-Eosin (H&E) and alizarin red staining. Altogether, the study showed that rGO coating improves Col scaffold properties and could be a promising implant for bone injuries.


2021 ◽  
Author(s):  
Chengyong Li ◽  
Tingting Yan ◽  
Zhenkai Lou ◽  
Zhimin Jiang ◽  
Zhi Shi ◽  
...  

Abstract Background Orthopedics has made great progress with the development of medical treatment; however, large bone defects are still great challenges for orthopedic surgeons. A good bone substitute that can be obtained through bone tissue engineering may be an effective treatment method. Artificial hydroxyapatite is the main inorganic component of bones, but its applications are limited due to its fragility and lack of bone-active elements. Therefore, it is necessary to reduce its fragility and improve its biological activity. Methods In this study, we developed micro-hydroxyapatite whiskers (mHAws), which were doped with the essential trace active elements Mg2+ and Sr2+ through a low-temperature sintering technique, used silica complexes to improve the mechanical properties, and then manufactured the bionic porous scaffolds by extrusion molding and freeze-drying. Results Four types of scaffolds were obtained: mHAw-SiO2, Mg-doped mHAw-SiO2, Sr-doped mHAw-SiO2 and Mg-Sr-codoped mHAw-SiO2. These composite porous scaffolds have been suggested to have a sufficiently porous morphology with appropriate mechanical strength, are noncytotoxic, are able to support cell proliferation and spreading, and, more importantly, can promote the osteogenic differentiation of rBMSCs. Conclusion Therefore, these doped scaffolds not only have physical and chemical properties suitable for bone tissue engineering, but also have higher osteogenic bioactivity, and can be possibly serve as potential bone repair material.


Sign in / Sign up

Export Citation Format

Share Document