Palmatine-loaded electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds accelerate wound healing and inhibit hypertrophic scar formation in a rabbit ear model

2020 ◽  
pp. 088532822095006
Author(s):  
Zhimin Jiang ◽  
Lichi Zhao ◽  
Feixiang He ◽  
Haixin Tan ◽  
Yongling Li ◽  
...  

Hypertrophic scar (HS) has been considered as a great concern for patients and a challenging problem for clinicians as it can cause functional debility, cosmetic disfigurement and psychological trauma. Although many methods have been developed to prevent and treat HS, the scarless healing is still a worldwide medical problem. In this study, palmatine-loaded poly( ε-caprolactone)/gelatin nanofibrous scaffolds (PCL/GE/PALs) were fabricated by electrospinning, and their effects on wound healing and HS formation were investigated. These nanofiber mats exhibit good antibacterial and antioxidant activities. In vitro studies indicate PCL/GE/PAL scaffolds can facilitate the adhesion, spreading and proliferation of L929 fibroblasts. In vivo tests demonstrate the full-thickness wounds treated with PCL/GE/PAL scaffolds heal about 3.5 days earlier than those in the control group. Scar elevation index measurements and histological analyses reveal PCL/GE/PAL scaffolds significantly inhibit HS formation, with the decrease in the thickness of dermis and epidermis, the number of fibroblasts, as well as the density of collagen and microvascular. Accelerating wound healing and inhibiting HS formation of these scaffolds are contributed to the sustained release of palmatine. The present work validates the potential use of palmatine-loaded electrospun nanofibrous scaffold PCL/GE/PALs as a functional wound dressing for healing wounds and preventing HS formation.

Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Richard Komakech ◽  
Motlalepula Gilbert Matsabisa ◽  
Youngmin Kang

Wounds remain one of the major causes of death worldwide. Over the years medicinal plants and natural compounds have played an integral role in wound treatment. Aspilia africana (Pers.) C. D. Adams which is classified among substances with low toxicity has been used for generations in African traditional medicine to treat wounds, including stopping bleeding even from severed arteries. This review examined the potential of the extracts and phytochemicals from A. africana, a common herbaceous flowering plant which is native to Africa in wound healing. In vitro and in vivo studies have provided strong pharmacological evidences for wound healing effects of A. africana-derived extracts and phytochemicals. Singly or in synergy, the different bioactive phytochemicals including alkaloids, saponins, tannins, flavonoids, phenols, terpenoids, β-caryophyllene, germacrene D, α-pinene, carene, phytol, and linolenic acid in A. africana have been observed to exhibit a very strong anti-inflammatory, antimicrobial, and antioxidant activities which are important processes in wound healing. Indeed, A. africana wound healing ability is furthermore due to the fact that it can effectively reduce wound bleeding, hasten wound contraction, increase the concentration of basic fibroblast growth factor (BFGF) and platelet derived growth factor, and stimulate the haematological parameters, including white and red blood cells, all of which are vital components for the wound healing process. Therefore, these facts may justify why A. africana is used to treat wounds in ethnomedicine.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Camila Carolina de Menezes Patrício Santos ◽  
Mirian Stiebbe Salvadori ◽  
Vanine Gomes Mota ◽  
Luciana Muratori Costa ◽  
Antonia Amanda Cardoso de Almeida ◽  
...  

The objective of the present study was to evaluate the antinociceptive effects of phytol using chemical and thermal models of nociception in mice and to assess its antioxidant effects in vitro. Phytol was administered intraperitoneally (i.p.) to mice at doses of 25, 50, 100, and 200 mg/kg. In the acetic acid-induced writhing test, phytol significantly reduced the number of contortions compared to the control group (P<0.001). In the formalin test, phytol reduced significantly the amount of time spent in paw licking in both phases (the neurogenic and inflammatory phases), this effect being more pronounced in the second phase (P<0.001). Phytol also provoked a significant increase in latency in the hot plate test. These antinociceptive effects did not impaire the motor performance, as shown in the rotarod test. Phytol demonstrated a strong antioxidant effect in vitro in its capacity to remove hydroxyl radicals and nitric oxide as well as to prevent the formation of thiobarbituric acid reactive substances (TBARS). Taken as a whole, these results show the pronounced antinociceptive effects of phytol in the nociception models used, both through its central and peripheral actions, but also its antioxidant properties demonstrated in the in vitro methods used.


2019 ◽  
Vol 5 (7) ◽  
pp. eaaw3963 ◽  
Author(s):  
S. O. Blacklow ◽  
J. Li ◽  
B. R. Freedman ◽  
M. Zeidi ◽  
C. Chen ◽  
...  

Inspired by embryonic wound closure, we present mechanically active dressings to accelerate wound healing. Conventional dressings passively aid healing by maintaining moisture at wound sites. Recent developments have focused on drug and cell delivery to drive a healing process, but these methods are often complicated by drug side effects, sophisticated fabrication, and high cost. Here, we present novel active adhesive dressings consisting of thermoresponsive tough adhesive hydrogels that combine high stretchability, toughness, tissue adhesion, and antimicrobial function. They adhere strongly to the skin and actively contract wounds, in response to exposure to the skin temperature. In vitro and in vivo studies demonstrate their efficacy in accelerating and supporting skin wound healing. Finite element models validate and refine the wound contraction process enabled by these active adhesive dressings. This mechanobiological approach opens new avenues for wound management and may find broad utility in applications ranging from regenerative medicine to soft robotics.


Author(s):  
Xuan Zhao ◽  
Xin Zuo ◽  
Jing Zhong ◽  
Bowen Wang ◽  
Saiqun Li ◽  
...  

Ocular chemical burns are potentially blinding ocular injuries and require urgent management. Amniotic membrane (AM) transplantation is an effective surgical treatment, one of the reasons is because AM is a rich source of growth factors that can promote epithelialization and wound healing. However, growth factors will be gradually lost and insufficient after preparation process and long-time storage, leading to unsatisfactory therapeutic effects. Herein, we present a modified AM (AM-HEP) for the supplement and sustained release of growth factor by surface grafting heparin for treatment of ocular chemical burns. Heparin grafting rate and stability, microstructure, physical property, and sustained release of epithelial growth factor (EGF) of AM-HEP were characterized. Biocompatibility and ability to promote corneal epithelial cell growth and migration were evaluated and compared with a biological amnion, which is available on the market in vitro. The therapeutic effects of AM-HEP combined with EGF (AM-HEP@EGF) in vivo had been evaluated in a model of mouse corneal alkali burn. The results indicated that heparin was introduced into AM and maintain stability over 3 weeks at 37°C. The modification process of AM-HEP did not affect microstructure and physical property after comparing with non-modified AM. EGF could be combined quickly and effectively with AM-HEP; the sustained release could last for more than 14 days. AM-HEP@EGF could significantly promote corneal epithelial cell growth and migration, compared with non-modified AM and control group. Faster corneal epithelialization was observed with the transplantation of AM-HEP@EGF in vivo, compared with the untreated control group. The corneas in the AM-HEP@EGF group have less inflammation and were more transparent than those in the control group. The results from in vitro and in vivo experiments demonstrated that AM-HEP@EGF could significantly enhance the therapeutic effects. Taken together, AM-HEP@EGF is exhibited to be a potent clinical application in corneal alkali burns through accelerating corneal epithelial wound healing.


2019 ◽  
Vol 8 (9) ◽  
pp. 1486 ◽  
Author(s):  
Barbara De Angelis ◽  
Margarida Fernandes Lopes Morais D’Autilio ◽  
Fabrizio Orlandi ◽  
Giampiero Pepe ◽  
Simone Garcovich ◽  
...  

Chronic ulcers are characterized by loss of substance without a normal tendency towards spontaneous healing. The Wound Bed Preparation Guideline advises that after diagnosis, the expert should correct the biological state of the ulcer micro-environment based on TIME principles (Tissue, Infection, Moisture balance, Epidermal). There are many ways to treat such ulcers, for example through use of advanced dressings, negative pressure, surgical toilets, dermal substitutes, autologous skin grafting, and free or local flaps. In vitro and in vivo pre-clinical models hold widely acknowledged potential yet complex limitations. Tissue bioengineering could be an ideal approach to foster innovative strategies in wound healing. Our observational study reports on an in vitro and in vivo evaluation of a bio-functionalized scaffold composed of platelet-rich plasma (PRP) and hyaluronic acid (HA) used in 182 patients affected by chronic ulcers (diabetic and vascular), comparing the results with a control group of 182 patients treated with traditional dressings (HA alone). After 30 days the patients who had undergone the combined treatment (PRP + HA), showed 96.8% ± 1.5% re-epithelialization, as compared to 78.4% ± 4.4% in the control group (HA only). Within 80 days, they had 98.4% ± 1.3% re-epithelialization as compared to 87.8% ± 4.1% in the control group (HA only; p < 0.05). No local recurrence was observed during the follow-up period. PRP + HA treatment showed stronger regenerative potential in terms of epidermal proliferation and dermal renewal compared with HA alone.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Si Chen ◽  
Xiang Li ◽  
Xin Liu ◽  
Ning Wang ◽  
Qi An ◽  
...  

The flavonoids were extracted from alfalfa using ethanol assisted with ultrasonic extraction and purified by D101 macroporous resin column chromatography. The chemical composition and content of ethanol elution fractions (EEFs) were assessed by ultrahigh-performance liquid chromatography and hybrid quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS) and aluminum nitrate-sodium nitrite-sodium hydroxide colorimetric method. The in vitro antioxidant activity of two EEFs was conducted by scavenging DPPH free radical, and the main antioxidants of 75% EEFs were screened using DPPH-UHPLC. Moreover, the in vivo antioxidant activity of 75% EEFs and the growth performance of broilers were studied. The results showed that the content of 30% and 75% EEFs was 26.20% and 62.57%. Fifteen compounds were identified from 75% EEFs, and five of them were reported in alfalfa for the first time. The scavenging activity of 75% and 30% EEFs (200 μg/mL) against DPPH was 95.51% and 78.85%. The peak area of 5,3′,4′-trihydroxyflavone and hyperoside was decreased by 82.69% and 76.04%, which exhibited strong scavenging capacities. The total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) level of three treated groups against the normal control group (NC) fed with basal diet significantly increased by 3.89-24.49%, 0.53-7.39%, and 0.79-11.79%, respectively. While the malondialdehyde (MDA) decreased by 0.47-18.27%. Compared with the NC, the feed to gain ratio (F : G) of three treated groups was lowered by 2.98-16.53% and survival rate of broilers significantly increased. Consequently, 75% EEFs extracted from alfalfa exhibited powerful antioxidant activities and might be a potential feed additive to poultry and livestock.


2014 ◽  
Vol 1025-1026 ◽  
pp. 476-481 ◽  
Author(s):  
Jia Wang ◽  
Rui Wen Yang ◽  
Jing Bo Liu ◽  
Song Yi Lin

The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) are important ones of antioxidant defense systems. Malonaldehyde (MDA) is formed as an end product of lipid peroxidation. Soybean peptides possess antioxidant activity. In previous study, the antioxidant activities of soybean peptides were determinedin vitro. The male ICR mice were intragastrically administered by different molecular weight and dose of soybean antioxidant peptides (SAP) for 60 days. Control group was treated with saline by intragastric administration for 60 days. The SOD, GSH-Px, CAT activity and MDA level were determined in serum. The results suggested the SAP of 1-3k Da had the ability to increase significantly GSH-Px and SOD activity and decrease significantly MDA level at different dose (100 and 200 mg/kg/d) compared with control group (P < 0.05). The SAP of 3-10k Da (200 mg/kg/d) enhanced the GSH-Px activity and decreased significantly MDA level compared with the control group (P < 0.05). The SAP of 10-30k Da (200 mg/kg/d) had the lowest MDA level among all the groups. All the SAP groups and positive control group cannot increase the CAT activity.


2014 ◽  
Vol 34 (3) ◽  
pp. 260-265 ◽  
Author(s):  
F Yesildal ◽  
FN Aydin ◽  
S Deveci ◽  
S Tekin ◽  
I Aydin ◽  
...  

Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2 H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation ( p < 0.001). In addition, in vivo rat model of skin wound-healing study showed that aspartame group had better healing than control group, and this was statistically significant at p < 0.05. There was a slight proliferative effect of aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases.


2012 ◽  
Vol 20 (2) ◽  
pp. 226-235 ◽  
Author(s):  
Tomohiro Fushimi ◽  
Shigeki Inui ◽  
Takeshi Nakajima ◽  
Masahiro Ogasawara ◽  
Ko Hosokawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document