Effects of Soybean Antioxidant Peptides (SAP) on SOD, GSH-Px, CAT Activity and MDA Level in Vivo

2014 ◽  
Vol 1025-1026 ◽  
pp. 476-481 ◽  
Author(s):  
Jia Wang ◽  
Rui Wen Yang ◽  
Jing Bo Liu ◽  
Song Yi Lin

The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) are important ones of antioxidant defense systems. Malonaldehyde (MDA) is formed as an end product of lipid peroxidation. Soybean peptides possess antioxidant activity. In previous study, the antioxidant activities of soybean peptides were determinedin vitro. The male ICR mice were intragastrically administered by different molecular weight and dose of soybean antioxidant peptides (SAP) for 60 days. Control group was treated with saline by intragastric administration for 60 days. The SOD, GSH-Px, CAT activity and MDA level were determined in serum. The results suggested the SAP of 1-3k Da had the ability to increase significantly GSH-Px and SOD activity and decrease significantly MDA level at different dose (100 and 200 mg/kg/d) compared with control group (P < 0.05). The SAP of 3-10k Da (200 mg/kg/d) enhanced the GSH-Px activity and decreased significantly MDA level compared with the control group (P < 0.05). The SAP of 10-30k Da (200 mg/kg/d) had the lowest MDA level among all the groups. All the SAP groups and positive control group cannot increase the CAT activity.

Author(s):  
O.D. Omodamiro ◽  
O. Ajah ◽  
C. Ewa-ibe

The medicinal properties of plants have been investigated in the recent scientific world because of their potent antioxidant activities, mild side effects and economic viability. This study  evaluated the antioxidant property and  antidiabetic effect of ethanol seed extract of G. kola (bitter kola) on alloxan induced diabetic albino rats. The in-vitro antioxidant assay was done using standard methods. Thirty (36) albino rats were used for the in-vivo study and fasted for 16-18hours and thereafter induced diabetes with 150mg/ kg b.w. of alloxan monohydrate via intraperitoneal injection. The animals were divided into six groups of six (6) rats each. Group A was the normal control, group B was the positive control (treated with 5mg/kg b.w of glabeclamide), Group C was the negative control (untreated) and groups D through F were administered 500mg/kg, 250mg/kg and 125mg/kg of the extract respectively. The results showed 49.70% reduction in blood glucose level of the 500mg/kg extract treated group compared to the positive control (45.03 %) on the day 7. The antioxidant results showed a significant (p<0.05) dose dependent increase in its ability to scavenge free radicals. The results of this study suggested the use of G. kola seed for the treatment of free radical mediated diseases and management of diabetes.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Liang ◽  
Xiaoran Li ◽  
Wangning Zhou ◽  
Yu Su ◽  
Shenbao He ◽  
...  

Purpose. To use in vitro and in vivo models to evaluate Glechoma longituba extract to provide scientific evidence for this extract’s antiurolithic activity. Materials and Methods. Potassium citrate was used as a positive control group. Oxidative stress (OS) markers and the expression of osteopontin (OPN) and kidney injury molecule-1 (KIM-1) were measured to assess the protective effects of Glechoma longituba. Multiple urolithiasis-related biochemical parameters were evaluated in urine and serum. Kidneys were harvested for histological examination and the assessment of crystal deposits. Results. In vitro and in vivo experiments demonstrated that treatment with Glechoma longituba extract significantly decreased calcium oxalate- (CaOx-) induced OPN expression, KIM-1 expression, and OS compared with the positive control group (P<0.05). Additionally, in vivo rats that received Glechoma longituba extract exhibited significantly decreased CaOx deposits and pathological alterations (P<0.05) compared with urolithic rats. Significantly lower levels of oxalate, creatinine, and urea and increased citrate levels were observed among rats that received Glechoma longituba (P<0.05) compared with urolithic rats. Conclusion. Glechoma longituba has antiurolithic effects due to its possible combined effects of increasing antioxidant levels, decreasing urinary stone-forming constituents and urolithiasis-related protein expression, and elevating urinary citrate levels.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Camila Carolina de Menezes Patrício Santos ◽  
Mirian Stiebbe Salvadori ◽  
Vanine Gomes Mota ◽  
Luciana Muratori Costa ◽  
Antonia Amanda Cardoso de Almeida ◽  
...  

The objective of the present study was to evaluate the antinociceptive effects of phytol using chemical and thermal models of nociception in mice and to assess its antioxidant effects in vitro. Phytol was administered intraperitoneally (i.p.) to mice at doses of 25, 50, 100, and 200 mg/kg. In the acetic acid-induced writhing test, phytol significantly reduced the number of contortions compared to the control group (P<0.001). In the formalin test, phytol reduced significantly the amount of time spent in paw licking in both phases (the neurogenic and inflammatory phases), this effect being more pronounced in the second phase (P<0.001). Phytol also provoked a significant increase in latency in the hot plate test. These antinociceptive effects did not impaire the motor performance, as shown in the rotarod test. Phytol demonstrated a strong antioxidant effect in vitro in its capacity to remove hydroxyl radicals and nitric oxide as well as to prevent the formation of thiobarbituric acid reactive substances (TBARS). Taken as a whole, these results show the pronounced antinociceptive effects of phytol in the nociception models used, both through its central and peripheral actions, but also its antioxidant properties demonstrated in the in vitro methods used.


Author(s):  
Nicholas P. Clayton ◽  
Akash Jain ◽  
Stephanie A. Halasohoris ◽  
Lisa M. Pysz ◽  
Sanae Lembirik ◽  
...  

Bacillus anthracis and Yersinia pestis, causative pathogens for anthrax and plague, respectively, along with Burkholderia mallei and B. pseudomallei are potential bioterrorism threats. Tebipenem pivoxil hydrobromide (TBP HBr, formerly SPR994), is an orally available prodrug of tebipenem, a carbapenem with activity versus multidrug-resistant (MDR) gram-negative pathogens, including quinolone-resistant and extended-spectrum-β-lactamase-producing Enterobacterales. We evaluated the in vitro activity and in vivo efficacy of tebipenem against biothreat pathogens. Tebipenem was active in vitro against 30-strain diversity sets of B. anthracis, Y. pestis, B. mallei, and B. pseudomallei with minimum inhibitory concentration (MIC) values of 0.001 – 0.008 μg/ml for B. anthracis, ≤0.0005 – 0.03 μg/ml for Y. pestis, 0.25 – 1 μg/ml for B. mallei, and 1 – 4 μg/ml for B. pseudomallei. In a B. anthracis murine model, all control animals died within 52 h post challenge. The survival rates in the groups treated with tebipenem were 75% and 73% when dosed at 12 h and 24 h post challenge, respectively. The survival rates in the positive control groups treated with ciprofloxacin were 75% and when dosed 12 h and 25% when dosed 24 h post challenge, respectively. Survival rates were significantly (p=0.0009) greater in tebipenem groups treated at 12 h and 24 h post challenge and in the ciprofloxacin group 12 h post-challenge vs. the vehicle-control group. For Y. pestis, survival rates for all animals in the tebipenem and ciprofloxacin groups were significantly (p<0.0001) greater than the vehicle-control group. These results support further development of tebipenem for treating biothreat pathogens.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Si Chen ◽  
Xiang Li ◽  
Xin Liu ◽  
Ning Wang ◽  
Qi An ◽  
...  

The flavonoids were extracted from alfalfa using ethanol assisted with ultrasonic extraction and purified by D101 macroporous resin column chromatography. The chemical composition and content of ethanol elution fractions (EEFs) were assessed by ultrahigh-performance liquid chromatography and hybrid quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS) and aluminum nitrate-sodium nitrite-sodium hydroxide colorimetric method. The in vitro antioxidant activity of two EEFs was conducted by scavenging DPPH free radical, and the main antioxidants of 75% EEFs were screened using DPPH-UHPLC. Moreover, the in vivo antioxidant activity of 75% EEFs and the growth performance of broilers were studied. The results showed that the content of 30% and 75% EEFs was 26.20% and 62.57%. Fifteen compounds were identified from 75% EEFs, and five of them were reported in alfalfa for the first time. The scavenging activity of 75% and 30% EEFs (200 μg/mL) against DPPH was 95.51% and 78.85%. The peak area of 5,3′,4′-trihydroxyflavone and hyperoside was decreased by 82.69% and 76.04%, which exhibited strong scavenging capacities. The total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) level of three treated groups against the normal control group (NC) fed with basal diet significantly increased by 3.89-24.49%, 0.53-7.39%, and 0.79-11.79%, respectively. While the malondialdehyde (MDA) decreased by 0.47-18.27%. Compared with the NC, the feed to gain ratio (F : G) of three treated groups was lowered by 2.98-16.53% and survival rate of broilers significantly increased. Consequently, 75% EEFs extracted from alfalfa exhibited powerful antioxidant activities and might be a potential feed additive to poultry and livestock.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1448 ◽  
Author(s):  
Sara Bernardi ◽  
Serena Bianchi ◽  
Anna Rita Tomei ◽  
Maria Adelaide Continenza ◽  
Guido Macchiarelli

Inflammatory diseases affecting the soft and hard tissues surrounding an implant represent a new challenge in contemporary implant dentistry. Among several methods proposed for the decontamination of titanium surfaces, the administration of topical 14% doxycycline gel seems to be a reliable option. In the present study, we evaluated the microbial effect of 14% doxycycline gel applied on titanium surfaces and exposed to human salivary microbes in anaerobic conditions. We also examined the composition of the exposed surfaces to assess the safe use of periodontal gel on titanium surfaces. Six anatase and six type 5 alloy titanium surfaces were used and divided into two groups: The test group and the positive control group. Both were cultured with human salivary samples in anaerobic conditions. On the test groups, 240 mg of periodontal gel was applied. The microbial assessment was performed with a colony-forming unit (CFU) count and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) to identify the species. The surface integrity was assessed using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). The results demonstrated the microbial efficacy of the 14% doxycycline periodontal gel and its safe use on titanium surfaces. However, the SEM observations revealed the permanence of the gel on the titanium surfaces due to the physical composition of the gel. This permanence needs to be further investigated in vivo and a final polishing protocol on the titanium surface is recommended.


Author(s):  
Jianhua Yang ◽  
Xiaoguang Jing ◽  
Zimin Wang ◽  
Xuejian Liu ◽  
Xiaofeng Zhu ◽  
...  

The normal anatomical structure of articular cartilage determines its limited ability to regenerate and repair. Once damaged, it is difficult to repair it by itself. How to realize the regeneration and repair of articular cartilage has always been a big problem for clinicians and researchers. Here, we conducted a comprehensive analysis of the physical properties and cytocompatibility of hydrogels, and evaluated their feasibility as cell carriers for Adipose-derived mesenchymal stem cell (ADSC) transplantation. Concentration-matched hydrogels were co-cultured with ADSCs to confirm ADSC growth in the hydrogel and provide data supporting in vivo experiments, which comprised the hydrogel/ADSCs, pure-hydrogel, defect-placement, and positive-control groups. Rat models of articular cartilage defect in the knee joint region was generated, and each treatment was administered on the knee joint cartilage area for each group; in the positive-control group, the joint cavity was surgically opened, without inducing a cartilage defect. The reparative effect of injectable glycol chitosan/dibenzaldehyde-terminated polyethylene glycol (GCS/DF-PEG) hydrogel on injured articular cartilage was evaluated by measuring gross scores and histological score of knee joint articular-cartilage injury in rats after 8 weeks. The 1.5% GCS/2% DF-PEG hydrogels degraded quickly in vitro. Then, We perform in vivo and in vitro experiments to evaluate the feasibility of this material for cartilage repair in vivo and in vitro.


2020 ◽  
Vol 16 ◽  
Author(s):  
Deepa Chaudhary ◽  
Rajnish Srivastava ◽  
Hemant Nagar

Aim:: The present work was aimed to find out the anti-allergic activity of ethanol extracts of Quisqualis indica Linn. (EEQI) by in-vitro and in-vivo murine models. Background:: Worldwide, the rise in prevalence of allergic diseases has continued in the industrialized world for more than 50 years. Worldwide, 0.05–2% of the population is estimated to experience anaphylaxis at some point in life. Quisqualis Indica Linn in an ornamental plant that have been rarely used as a herbal medicines, however presence of polyphenols and flavonoids have been reported to possessed anti-inflammatory, antipyretic and immunomodulatory activity which have some pathological relevance with anaphylaxis. Objective:: The objective of the present research was to investigate, scientifically explored and understand the probable antianaphylactic mechanism of ethanol extracts of Quisqualis indica Linn. via different preclinical models. Material and Method:: In-vitro study was done on de-granulated mesenteric mast cells induced by compound 48/80 and invivo study was done by passive cutaneous anaphylaxis (PCA) model. In the in-vitro study degranulated mesenteric cells were grouped into negative control (compound 48/80 treated), positive control (Disodium cromoglycate + 48/80 treated) and 3 test groups (EEQI 10 μg/ml + 48/80 treated, EEQI 50 μg/ml + 48/80 treated and EEQI 100 μg/ml + 48/80 treated). The number of degranulated mast cells was counted and compared within the different treatment groups. In the in-vivo study the rats were first grouped into negative control (vehicle only), positive control (Disodium cromoglycate) and 2 test groups (EEQI: 100 and 200 mg/kilogram). The animals were pretreated for 12 days. On the 12th day all the rats were immunized with serum anti-ovalbumin (obtained from an already sensitized rat) by the intradermal route. After 24 h of serum injection, Evans blue dye containing oval albumin was administered intravenously in all groups. Three days later, the rats were taken down for the severity of the anaphylactic reactions. Result:: EEQI significantly attenuate mast cell degranulation and maintain the cell intactness as compared to control (P < 0.001). It was set up to support the degree of anaphylaxis as compared to control group (P < 0.001). Conclusion:: The outcomes of the work revealed the preventive effect of Quisqualis indica Linn. against allergic manifestations.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 704 ◽  
Author(s):  
Siyuan Luo ◽  
Xuelian Jiang ◽  
Liping Jia ◽  
Chengyue Tan ◽  
Min Li ◽  
...  

The aim of this study was to evaluate the antioxidant activities of extracts from olive leaves (EOL). The main contents of EOL were determined by colorimetric methods. The antioxidant activities were assessed by measuring the scavenging free radicals in vitro. To investigate the antioxidant activity in vivo, we detected the survival of Caenorhabditis elegans, under thermal stress. Subsequently the reactive oxygen species (ROS) level, activities of antioxidant enzymes, the expression of HSP-16.2 and the translocation of daf-16 were measured. The results showed that, polyphenols was the main component. EOL could well scavenge DPPH and superoxide anion radicals in vitro. Compared to the control group, the survival rate of C. elegans treated with EOL was extended by 10.43%, under heat stress. The ROS level was reduced, while the expression of hsp-16.2 was increased to protect the organism against the increasing ROS. The level of malondialdehyde (MDA) also decreased sharply. The activities of inner antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) were potentiated, which might have had a correlation with the DAF-16 transcription factor that was induced-turned into the nuclear. Therefore, EOL showed a strong antioxidant ability in vitro and in vivo. Hence, it could be a potential candidate when it came to medicinal and edible plants.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1187 ◽  
Author(s):  
Yue Zhang ◽  
Ying-li Yu ◽  
Hua Tian ◽  
Ru-yu Bai ◽  
Ya-nan Bi ◽  
...  

The purpose of this research was to extract and separate the compounds from frankincense, and then evaluate their anti-inflammatory effects. The isolated compound was a representative tetracyclic triterpenes of glycine structure according to 1H-NMR and 13C-NMR spectra, which is β-elemonic acid (β-EA). We determined the content of six different localities of frankincense; the average content of β-EA was 41.96 mg/g. The toxic effects of β-EA administration (400, 200, 100 mg/kg) for four weeks in Kunming (KM) mice were observed. Compared with the control group, the body weight of mice, the visceral coefficients and serum indicators in the β-EA groups showed no systematic variations. The anti-inflammatory effects of β-EA were evaluated in LPS-induced RAW264.7 cells, xylene-induced induced ear inflammation in mice, carrageenin-induced paw edema in mice, and cotton pellet induced granuloma formation in rats. β-EA inhibited overproduction of tumor necrosis factor-α(TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein 1 (MCP-1), soluble TNF receptor 1 (sTNF R1), Eotaxin-2, Interleukin 10 (IL-10) and granulocyte colony-stimulating factor (GCSF) in the RAW264.7 cells. Intragastric administration with β-EA (300, 200, and 100 mg/kg in mice, and 210, 140, and 70 mg/kg in rats) all produced distinct anti-inflammatory effects in vivo in a dose-dependent manner. Following treatment with β-EA (300 mg/kg, i.g.), the NO level in mice ears and PGE2 in mice paws both decreased (p < 0.01). In conclusion, our study indicates that β-EA could be a potential anti-inflammatory agent for the treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document