scholarly journals The Optimisation of Flax Fibre Yarns for the Development of High-Performance Natural Fibre Composites

2003 ◽  
Vol 12 (6) ◽  
pp. 096369350301200 ◽  
Author(s):  
S. Goutianos ◽  
T. Peijs

Currently most developments in the area of natural fibre reinforced composites have focused on random discontinuous fibre composite systems. The development of continuous fibre reinforced composites is, however, essential for manufacturing materials, which can be used in load-bearing/structural applications. The main problem in this case is the optimisation of the yarn to be used to manufacture the textile reinforcement. Low twisted yarns display a very low strength when tested dry in air and therefore they can not be used in processes such as pultrusion or textile manufacturing routes. On the other hand, by increasing the level of twist, a degradation of the mechanical properties is observed in impregnated yarns (e.g. unidirectional composites) similar to off-axis composites. Additionally, a high level of twist decreases the permeability of the yarns. This problem is addressed in the current work using yarns based on both long and short flax fibres.

2018 ◽  
Vol 32 (9) ◽  
pp. 1282-1302 ◽  
Author(s):  
T Rajmohan ◽  
R Vinayagamoorthy ◽  
K Mohan

In the modern years, natural fibre composites have been converted into significant materials in many industries such as automotive, aerospace and and so on. Several types of natural fibre composites, particularly plant-based fibre composites, have been developed and tested. However, their mixed nature, engineer’s requirement of experience, an understanding of machinability databases, limit setting and trouble in manufacturing are barriers to extensive use of composites. The final shape of the natural fibre–reinforced composites (NFRCs) are obtained by conventional and unconventional machining. Machining of these composites generates confront due to the heterogeneous and anisotropic nature. Different methodologies and tools are intended to overcome the machining defects. In this article, a wide range of literature review on machining of NFRCs is examined with focus on conventional and unconventional machining operation. This article also discusses the influences of machining parameters and optimum conditions for machining of NFRCs.


2017 ◽  
Vol 37 (9) ◽  
pp. 879-895 ◽  
Author(s):  
Agnivesh Kumar Sinha ◽  
Harendra K. Narang ◽  
Somnath Bhattacharya

Abstract Extensive efforts have been made in the last decade for the development of natural fibre composites. This development paved the way for engineers and researchers to come up with natural fibre composites (NFCs) that exhibit better mechanical properties. The present review is based on the mechanical properties of jute, abaca, coconut, kenaf, sisal, and bamboo fibre-reinforced composites. Before selecting any NFC for a particular application, it becomes necessary to understand its compatibility for the same, which can be decided by knowing its mechanical properties such as tensile, flexural, and impact strengths. This review paper emphasises on the factors influencing the mechanical properties of NFCs like the type of matrix and fibre, interfacial adhesion, and compatibility between matrix and fibre. Efforts are also made to unveil the research gaps from the past literatures, as a result of which it is inferred that there is very limited work published in the field of vibration incorporating potential fillers such as red mud and fly ash with NFCs.


2020 ◽  
pp. 073168442095810
Author(s):  
Shanmugam Vigneshwaran ◽  
KM John ◽  
R Deepak Joel Johnson ◽  
Marimuthu Uthayakumar ◽  
V Arumugaprabu ◽  
...  

Natural fibre composites are the promising replacement for synthetic fibre owing to their improved properties, and more importantly, natural fibres are biodegradable and of low cost. These characteristics have made them viable for contemporary engineering and structural applications. However, large scale production of natural fibre composites is in prone because of the challenges in manufacturing and machining. Fibre composite exhibits poor machinability characteristics owing to their heterogeneous and anisotropic behaviour. To overcome this problem, various steps and new methodologies have been established in the view to produce quality machining in natural fibre composites. In recent years, the possibility of conventional machining in natural fibre composites was also discussed. In the present review study, an effort has been taken in studying the fibre composite’s machining characteristics and their failure mechanism in both conventional and unconventional machining. The influence of process parameters in machining different natural fibre composites is also discussed.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2129 ◽  
Author(s):  
Ali Kandemir ◽  
Thomas R. Pozegic ◽  
Ian Hamerton ◽  
Stephen J. Eichhorn ◽  
Marco L. Longana

Growing environmental concerns and stringent waste-flow regulations make the development of sustainable composites a current industrial necessity. Natural fibre reinforcements are derived from renewable resources and are both cheap and biodegradable. When they are produced using eco-friendly, low hazard processes, then they can be considered as a sustainable source of fibrous reinforcement. Furthermore, their specific mechanical properties are comparable to commonly used, non-environmentally friendly glass-fibres. In this study, four types of abundant natural fibres (jute, kenaf, curaua, and flax) are investigated as naturally-derived constituents for high performance composites. Physical, thermal, and mechanical properties of the natural fibres are examined to evaluate their suitability as discontinuous reinforcements whilst also generating a database for material selection. Single fibre tensile and microbond tests were performed to obtain stiffness, strength, elongation, and interfacial shear strength of the fibres with an epoxy resin. Moreover, the critical fibre lengths of the natural fibres, which are important for defining the mechanical performances of discontinuous and short fibre composites, were calculated for the purpose of possible processing of highly aligned discontinuous fibres. This study is informative regarding the selection of the type and length of natural fibres for the subsequent production of discontinuous fibre composites.


Fibre reinforced composites have been an essential concern in various fields, especially in the field of aerospace owing to its high strength to weight ratio, toughness, corrosion resistant and low cost. Natural fibre reinforced composites have produced better results in mechanical properties like impact, toughness and fatigue strengths when compared to synthetic fibre reinforced composites. Recently researches have been conducted on different varieties of natural fibres for use in plastics such as jute straw, wood, rice husk, wheat, barley etc. Natural fibres have also attracted the attention of researchers due to its availability, renewability, degradability and most importantly ecofriendly. In this work an attempt is made to improve the mechanical properties of the composite and also to enhance the compatibility of the fibres with the matrix. The composite is prepared by reinforcing banana fibres into unsaturated epoxy matrix using hand layup method. Mechanical properties such as tensile strength, flexural strength and hardness strengths are carried out on the specimens made by reinforcing with 5%, 10 % and 15 %concentration of banana fibre by weight. The results showed that the composite with 15% concentration of banana fibre produced higher tensile strength of 21.43 MPa, flexural strength of 0.895 kPa and Shroud hardness of 59.3.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1794 ◽  
Author(s):  
M. L. Longana ◽  
H. Yu ◽  
J. Lee ◽  
T. R. Pozegic ◽  
S. Huntley ◽  
...  

Conventional composite materials reinforced with continuous fibres display high specific strength but have a number of drawbacks including: the elastic-brittle behaviour, difficulties in producing defect-free components of complex shape with high-volume automated manufacturing processes, and inherent lack of recyclability. Highly aligned, discontinuous fibre-reinforced composites (ADFRCs) are truly beneficial for mass production applications, with the potential to offer better formability and comparable mechanical properties with continuous fibre-reinforced composites. In previous publications, the High Performance Discontinuous Fibre (HiPerDiF) technology has been shown to offer the possibility to intimately hybridise different types of fibres, to achieve pseudo-ductile tensile behaviour, and remanufacture reclaimed fibres into high-performance recycled composites. However, to date, the work has been conducted with unidirectional (UD) laminates, which is of limited interest in engineering applications with mechanical stresses acting across many directions; this paper reports, for the first time, the mechanical behaviour of quasi-isotropic (QI) ADFRCs. When compared with randomly-oriented discontinuous fibre composites (RODFRCs), QI ADFRCs offer enhanced stiffness (+26%) and strength (+77%) with higher consistency, i.e., a reduction of the coefficient of variance from the 25% of RODFRCs to the 6% of ADFRCs. Furthermore, hybrid QI ADFRCs retain the pseudo-ductility tensile behaviour previously observed in unidirectional (UD) lay-up.


1992 ◽  
Vol 27 (1) ◽  
pp. 29-42 ◽  
Author(s):  
W J Cantwell ◽  
J Morton

In this paper the various failure modes which occur in long fibre composites are described and discussed. The significance of each of these fracture mechanisms, in terms of their energy-dissipating capacity as well as their effect on the residual load-bearing properties, is considered. A brief review of both the destructive and non-destructive techniques used for detecting and characterizing defects and damage is presented. The ability of each technique to identify the various fracture mechanisms involved in the failure of long fibre reinforced composites is discussed and their overall suitability for damage detection evaluated.


2019 ◽  
Vol 54 (15) ◽  
pp. 1947-1960 ◽  
Author(s):  
Lucas Ciccarelli ◽  
Frederik Cloppenburg ◽  
Sangeetha Ramaswamy ◽  
Stepan V Lomov ◽  
Aart Van Vuure ◽  
...  

Coir fibres, a byproduct of the coconut industry, have high performance qualities but are difficult to process by conventional textile methods. The purpose of the research is to combine the processibility of hemp and flax with the high-performance properties of coir to create a composite product worthy of industrial applications. The evaluation of coir fibre-reinforced composites focuses on the processibility of the coir fibre into a nonwoven, how well it interfaces with polylactic acid and an analysis of how the mechanical properties of the final product change when mixing coir with hemp and flax. The results show that the hybrid samples outperformed most of the researched values for coir composites, despite the reduced properties of control samples as in comparable research. Adding just 10% of either flax or hemp dramatically increased the mechanical properties compared to the pure coir–polylactic acid composite.


Sign in / Sign up

Export Citation Format

Share Document