Effects of grafting low-generation poly(amido amine) onto carbon fiber surface by in situ polymerization on the mechanical properties of fiber composites

2016 ◽  
Vol 29 (7) ◽  
pp. 808-815 ◽  
Author(s):  
Bo Gao ◽  
Wentao Du ◽  
Qinghai Ma ◽  
Ruliang Zhang ◽  
Chengguo Wang ◽  
...  

Low-generation poly(amido amine) (PAMAM)-grafted carbon fibers (CFs) emerged as a new reinforcement for improving the mechanical properties of fiber composites. In this work, hybrid reinforcement, which could greatly enhance the surface roughness and wettability of CF, was prepared via growing PAMAM onto fiber surface by in situ polymerization.The modified surface morphology and chemical composition were investigated by scanning electron microscopy, atomic force microscopy, dynamic contact angle analysis test, and X-ray photoelectron spectroscopy. Experimental results indicated PAMAM dendrimers grown on the CF significantly enhanced interfacial properties of the resulting composites. In addition, compared with the desized CF composites, the CF grafted with PAMAM composites exhibited 34.65% enhancement in the interfacial shear strength.

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1794 ◽  
Author(s):  
Lu ◽  
Yi ◽  
Ning ◽  
Ge ◽  
S.M.

Meta-aramid fibrids (MAF) have attracted much attention. However, it is difficult for this high mechanical performance fiber to form sufficient interface adhesion between the MAF and polyurethane (PU) matrix due to the chemical inertness of its surface. Thus, the surface activity of MAF should be improved to obtain a high-performance MAF/PU composite. A novel methodology to modify the surface of MAF with a sodium dichloroisocyanurate solution (DCCNa) was developed to obtain chlorinated MAF (MAFC) in this study. A series of MAFC/PU composites was prepared by in situ polymerization processes. The results of Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated that the chlorine-contained chemical groups were introduced onto the MAF surfaces after chlorination. Dynamic contact angle analysis (DCAA) revealed that the surface wettability and the surface free energy of the MAFC were significantly improved, which allowed for strong chemical bonding to PU. Scanning electron microscopy (SEM) showed a uniform distribution of MAFC and good interfacing bonding between the MAFC and PU. With the incorporation of 1.5 wt% MAFC into the polyurethane matrix, the tensile and tear strength values of MAFC/PU were 36.4 MPa and 80.1 kN·m−1 respectively, corresponding to improvements of approximately 43.3% and 21.1%, as compared to those of virgin PU as 25.4 MPa and 66.1 kN·m−1, respectively.


2009 ◽  
Vol 24 (8) ◽  
pp. 2728-2735 ◽  
Author(s):  
A. Saritha Chandran ◽  
Sunil K. Narayanankutty

Conducting nylon 6 fibers were prepared by in situ polymerization of aniline on to the fiber surface, after providing a chemical etching treatment to the fibers using chromic acid. The properties of the etched and polyaniline (PANI) coated fibers were evaluated using scanning electron microscopy, x-ray photoelectron spectroscopy, infrared spectroscopy, x-ray diffraction, thermogravimetry, and differential scanning calorimetry. Though the etching process caused a marginal decline in the mechanical properties of the fiber, it provided a reasonably rough surface for PANI adhesion and enhanced the conductivity of the fiber. The conductivity increased from 4.22 × 10−2 to 3.72 × 10−1 S/cm at an etching time of 4 h.


2014 ◽  
Vol 1015 ◽  
pp. 381-384
Author(s):  
Li Liu ◽  
Li Hai Cai ◽  
Dan Liu ◽  
Jun Xu ◽  
Bao Hua Guo

The poly (butylene succinate) (PBS) and 3 wt% attapulgite (ATP) reinforced PBS/ATP nanocomposites with 1,6-hexanediol were fabricated using an in situ polymerization method. The crystallization behaviors indicated that ATP had effectively acted as nucleating agent, resulting in the enhancement on the crystallization temperature. The SEM results showed a superior interfacial linkage between ATP and PBS. Also, ATP could disperse as a single fiber and embed in the polymer matrix, which resulted in the improved mechanical properties.


2013 ◽  
Vol 750-752 ◽  
pp. 7-10
Author(s):  
Kou An Hao ◽  
Zhen Qing Wang ◽  
Li Min Zhou

Fiber impregnation has been the main obstacle for thermoplastic matrix with high viscosity. This problem could be surmounted by adapting low viscous polymeric precursors Woven basalt fabric reinforced poly (butylenes terephthalate) composites were produced via in-situ polymerization at T=210°C. Before polymerization, catalyst was introduced to the reinforcement surface with different concentration. DSC is used to determine the polymerization and crystallization. SEM is used to detect whether the catalyst existed on surface. Both flexural and short-beam shear test are employed to study the corresponding mechanical properties.


2010 ◽  
Vol 146-147 ◽  
pp. 805-809
Author(s):  
Ji You Gu ◽  
Lan Zhang ◽  
Xian Kai Jiang

The investigations including the acid treatment to multi-walled carbon nano-tubes (MWNTs) and the synthesis of MWNTs/polyurethane composites via in situ polymerization were done. X-ray Photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA) were utilized for evaluating the effects of acid-treated MWNTs on the properties and microstructure of the composites. The results indicated that carboxyl groups could be successfully introduced onto the surface of MWNTs by acid treatment. The dynamic storage modulus and glass transition temperature of composites increased with the existence of MWNTs. The improvement of polyurethane by acid-treated MWNTs performed better compared to raw MWNTs.


Sign in / Sign up

Export Citation Format

Share Document