Process modeling, joint virtual testing and construction of joint connectors for mechanical fastening by flow-drilling screws

Author(s):  
Mica Grujicic ◽  
JS Snipes ◽  
S Ramaswami

In this work, a computational approach is proposed in order to help establish the effect of various flow-drilling screw process and material parameters on the quality and the mechanical performance of the resulting flow-drilling screw joints. Toward that end, a sequence of three distinct computational analyses is developed. These analyses include the following: (a) finite element modeling and simulations of the flow-drilling screw process; (b) determination of the mechanical properties of the resulting flow-drilling screw joints through the use of three-dimensional, continuum finite element–based numerical simulations of various mechanical tests performed on the flow-drilling screw joints and (c) determination, parameterization and validation of the constitutive relations for the simplified flow-drilling screw connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, for example, car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all flow-drilling screw joints is associated with a prohibitive computational cost. The approach developed in this work can be used, within an engineering-optimization procedure, to adjust the flow-drilling screw process and material parameters (design variables) in order to obtain a desired combination of the flow-drilling screw joint mechanical properties (objective function).

2016 ◽  
Vol 7 (3) ◽  
pp. 370-396 ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
S Ramaswami

Purpose – The purpose of this paper is to propose a computational approach to establish the effect of various flow drilling screw (FS) process and material parameters on the quality and the mechanical performance of the resulting FS joints. Design/methodology/approach – Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the FS process; (b) determination of the mechanical properties of the resulting FS joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the FS joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified FS connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all FS joints is associated with a prohibitive computational cost. Findings – Virtual testing of the shell components fastened using the joint connectors validated the ability of these line elements to realistically account for the strength, ductility and toughness of the three-dimensional FS joints. Originality/value – The approach developed in the present work can be used, within an engineering-optimization procedure, to adjust the FS process and material parameters (design variables) in order to obtain a desired combination of the FS-joint mechanical properties (objective function).


2014 ◽  
Vol 10 (4) ◽  
pp. 631-658 ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
S. Ramaswami ◽  
Fadi Abu-Farha

Purpose – The purpose of this paper is to propose a computational approach in order to help establish the effect of various self-piercing rivet (SPR) process and material parameters on the quality and the mechanical performance of the resulting SPR joints. Design/methodology/approach – Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the SPR process; (b) determination of the mechanical properties of the resulting SPR joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the SPR joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified SPR connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all SPR joints is associated with a prohibitive computational cost. Findings – It is found that the approach developed in the present work can be used, within an engineering optimization procedure, to adjust the SPR process and material parameters (design variables) in order to obtain a desired combination of the SPR-joint mechanical properties (objective function). Originality/value – To the authors’ knowledge, the present work is the first public-domain report of the comprehensive modeling and simulations including: self-piercing process; virtual mechanical testing of the SPR joints; and derivation of the constitutive relations for the SPR connector elements.


Author(s):  
Hui Huang ◽  
Jian Chen ◽  
Blair Carlson ◽  
Hui-Ping Wang ◽  
Paul Crooker ◽  
...  

Due to enormous computation cost, current residual stress simulation of multipass girth welds are mostly performed using two-dimensional (2D) axisymmetric models. The 2D model can only provide limited estimation on the residual stresses by assuming its axisymmetric distribution. In this study, a highly efficient thermal-mechanical finite element code for three dimensional (3D) model has been developed based on high performance Graphics Processing Unit (GPU) computers. Our code is further accelerated by considering the unique physics associated with welding processes that are characterized by steep temperature gradient and a moving arc heat source. It is capable of modeling large-scale welding problems that cannot be easily handled by the existing commercial simulation tools. To demonstrate the accuracy and efficiency, our code was compared with a commercial software by simulating a 3D multi-pass girth weld model with over 1 million elements. Our code achieved comparable solution accuracy with respect to the commercial one but with over 100 times saving on computational cost. Moreover, the three-dimensional analysis demonstrated more realistic stress distribution that is not axisymmetric in hoop direction.


2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Dani Liu ◽  
Bahareh Shakibajahromi ◽  
Genevieve Dion ◽  
David Breen ◽  
Antonios Kontsos

The mechanical behavior of knitted textiles is simulated using finite element analysis (FEA). Given the strong coupling between geometrical and physical aspects that affect the behavior of this type of engineering materials, there are several challenges associated with the development of computational tools capable of enabling physics-based predictions, while keeping the associated computational cost appropriate for use within design optimization processes. In this context, this paper investigates the relative contribution of a number of computational factors to both local and global mechanical behavior of knitted textiles. Specifically, different yarn-to-yarn interaction definitions in three-dimensional (3D) finite element models are compared to explore their relative influence on kinematic features of knitted textiles' mechanical behavior. The relative motion between yarns identified by direct numerical simulations (DNS) is then used to construct reduced order models (ROMs), which are shown to be computationally more efficient and providing comparable predictions of the mechanical performance of knitted textiles that include interfacial effects between yarns.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 735
Author(s):  
Yanzeng Sun ◽  
Hui Xu ◽  
Zetian Zhao ◽  
Lina Zhang ◽  
Lichun Ma ◽  
...  

The rational design of carbon nanomaterials-reinforced polymer matrix composites based on the excellent properties of three-dimensional porous materials still remains a significant challenge. Herein, a novel approach is developed for preparing large-scale 3D carbon nanotubes (CNTs) and graphene oxide (GO) aerogel (GO-CNTA) by direct grafting of CNTs onto GO. Following this, styrene was backfilled into the prepared aerogel and polymerized in situ to form GO–CNTA/polystyrene (PS) nanocomposites. The results of X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy indicate the successful establishment of CNTs and GO-CNT and the excellent mechanical properties of the 3D frameworks using GO-CNT aerogel. The nanocomposite fabricated with around 1.0 wt% GO-CNT aerogel displayed excellent thermal conductivity of 0.127 W/m∙K and its mechanical properties were significantly enhanced compared with pristine PS, with its tensile, flexural, and compressive strengths increased by 9.01%, 46.8%, and 59.8%, respectively. This facile preparation method provides a new route for facilitating their large-scale production.


2000 ◽  
Author(s):  
Kerem Ün ◽  
Peter S. Donzelli ◽  
Robert L. Spilker

Abstract Moving contact is fundamental to understanding the mechanical environment of articular cartilage in diarthrodial joints. This study presents a method for approximating three-dimensional (3D) moving contact of biphasic tissue layers using a time-dependent penetration method. This technique has been implemented in a custom finite element solution framework for large-scale simulation that includes a graphical user interface, automatic meshing, and visualization tools. Thus, physiological geometry and load levels can be simulated by this approximate technique. The method is illustrated for canonical and physiological problems representing the glenohumeral joint (GHJ) of the shoulder.


Mathematics ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 132 ◽  
Author(s):  
Harwinder Singh Sidhu ◽  
Prashanth Siddhamshetty ◽  
Joseph Kwon

Hydraulic fracturing has played a crucial role in enhancing the extraction of oil and gas from deep underground sources. The two main objectives of hydraulic fracturing are to produce fractures with a desired fracture geometry and to achieve the target proppant concentration inside the fracture. Recently, some efforts have been made to accomplish these objectives by the model predictive control (MPC) theory based on the assumption that the rock mechanical properties such as the Young’s modulus are known and spatially homogenous. However, this approach may not be optimal if there is an uncertainty in the rock mechanical properties. Furthermore, the computational requirements associated with the MPC approach to calculate the control moves at each sampling time can be significantly high when the underlying process dynamics is described by a nonlinear large-scale system. To address these issues, the current work proposes an approximate dynamic programming (ADP) based approach for the closed-loop control of hydraulic fracturing to achieve the target proppant concentration at the end of pumping. ADP is a model-based control technique which combines a high-fidelity simulation and function approximator to alleviate the “curse-of-dimensionality” associated with the traditional dynamic programming (DP) approach. A series of simulations results is provided to demonstrate the performance of the ADP-based controller in achieving the target proppant concentration at the end of pumping at a fraction of the computational cost required by MPC while handling the uncertainty in the Young’s modulus of the rock formation.


Sign in / Sign up

Export Citation Format

Share Document