Influence of different featured tools on machining accuracy in electrochemical milling

Author(s):  
Koushik Mishra ◽  
Biplab Ranjan Sarkar ◽  
B Bhattacharyya

Drawbacks of electrochemical machining can be conquered to a large extent with the introduction of electrochemical milling technique. In this method, a simple shaped tool follows a predetermined tool path and material gets removed atom-by-atom from anode workpiece by electrochemical reactions through layer-by-layer approach. Keeping in mind the rising trend of electrochemical milling technique, this research work focuses to investigate the impact of major process parameters of electrochemical milling, for example, feed rate and milling layer depth on foremost responses like material removal rate and width overcut during electrochemical milling of Nimonic-263 alloy. In this research work, three different types of featured tools have been utilized and for each tool, ANSYS simulation has been carried out for analysing their impact on machining accuracy. Furthermore, these obtained simulated results have been confirmed by experimentation. Finally, an attempt has been made to produce more accurate ‘L’-shaped features on Nimonic-263 alloy with the aid of tool rotation and inner-spraying featured tools. This study confirms that mixed electrolyte, that is, NaCl(1M) + NaNO3(1M), tool rotation with internal flushing, number of outlets and the structure of the end face of the tool generate excellent machining accuracy with super finished surface with Ra value in the order of 0.07–0.08 µm during electrochemical milling of Nimonic-263 alloy.

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7714
Author(s):  
Yong Yang ◽  
Yufeng Wang ◽  
Yujie Gui ◽  
Wenwu Zhang

The fabrication of deep microgrooves has become an issue that needs to be addressed with the introduction of difficult-to-cut materials and ever-increasing stringent quality requirements. However, both laser machining and electrochemical machining could not fulfill the requirements of high machining efficiency and precision with good surface quality. In this paper, laser and shaped tube electrochemical milling (Laser-STEM) were initially employed to fabricate microgrooves. The mechanisms of the Laser-STEM process were studied theoretically and experimentally. With the developed experimental setup, the influences of laser power and voltage on the width, depth and bottom surface roughness of the fabricated microgrooves were studied. Results have shown a laser power of less than 6 W could enhance the electrochemical machining rate without forming a deep kerf at the bottom during Laser-STEM. The machining accuracy or localization of electrochemicals could be improved with laser assistance, whilst the laser with a high-power density would deteriorate the surface roughness of the bottom machining area. Experimental results have proved that both the machining efficiency and the machining precision can be enhanced by synchronous laser-assisted STEM, compared with that of pure electrochemical milling. The machining side gap was decreased by 62.5% while using a laser power of 6 W in Laser-STEM. The laser-assistance effects were beneficial to reduce the surface roughness of the microgrooves machined by Laser-STEM, with the proper voltage. A laser power of 3 W was preferred to obtain the smallest surface roughness value. Additionally, the machining efficiency of layer-by-layer Laser-STEM can be improved utilizing a constant layer thickness (CLT) mode, while fabricating microgrooves with a high aspect ratio. Finally, microgrooves with a width of 1.79 mm, a depth of 6.49 mm and a surface roughness of 2.5 μm were successfully fabricated.


2011 ◽  
Vol 204-210 ◽  
pp. 1830-1834
Author(s):  
Zhao Long Li ◽  
Shi Chun Di

The method of machining deep hole on Ni-base alloy which can tolerant high temperature by pulse electrochemical machining has been proposed in this paper. Five technical parameters are discussed on the effect of mass removal rate of machining process. Establish a dynamic math model, and analyze the effect of process parameters on the mass material removal rate of deep small holes. Machining accuracy of deep small holes was analyzed.


2013 ◽  
Vol 394 ◽  
pp. 205-210
Author(s):  
A.K.M. Nurul Amin ◽  
Fawaz Mohsen Abdullah ◽  
Ummu Atiqah Khairiyah B. Mohammad ◽  
Muammer Din Arif

Chatter is a self-excited and violent form of vibration which is almost unavoidable in all machining processes. It affects surface roughness, machining accuracy, cutting tool and machine tool life, metal removal rate; and consequently operation cost. This research work focuses on investigation of the influence of the cutting parameters on chatter and implementation of a method based on application of permanent magnet for controlling chatter during turning of stainless steel AISI 304 using coated carbide tool. For this purpose, a powerful permanent bar magnet (of strength 1250-1350 Gauss) was placed inside a specially developed fixture mounted on the lathe machine carriage, to apply magnetic field to the base of the tool holder in the Z direction. The effectiveness of the application of the magnet on chatter suppression was measured in terms of reduction of amplitude of chatter compared to conventional turning. To achieve this, a small central composite design (CCD) of the Response Surface Methodology (RSM) with five levels and an alpha value of 1.4142, was used in the design of the experiments (DoE). Design-Expert 6.0 software was utilized in the model development process. Vibration monitoring was done using an online vibration monitoring system. FFT analysis of the recorded vibration signals was conducted using DASYLab software to evaluate the peak chatter amplitudes and their corresponding excited frequencies. The acceleration amplitude was found to be reduced by a maximum of 73.43% and an average of 31.58% due to the effect of damping on the resonant amplitude offered by the magnetic field created by the permanent magnet.


2018 ◽  
Author(s):  
Lijo Paul ◽  
Arun B. Kumar

Electrochemical discharge machining (ECDM), also known as spark assisted chemical engraving (SACE), is an effective micro-machining process for machining of electrically nonconducting materials. It involves melting and etching process under the high electrical discharge on the electrode tip during electrolysis that enables the ECDM process to machine very hard and non-conducting materials such as borosilicate glass, quartz, ceramics etc. efficiently and economically. In the current study micro holes are machined on borosilicate glass with an electrolyte mixed with graphite powder. The conductive graphite powder in electrolyte has shown improvement in machining with more quantity of spark during machining. The main parameters taken in the study are voltage, tool rotation and duty factor along with concentration of powder in electrolyte. The main output responses taken in the study are Material Removal Rate (MRR) and lower Radial Overcut (ROC) along the machined holes. A multi-objective optimization is carried out for higher MRR and lower ROC with Grey Relation Analysis (GRA) in order to obtain the best parameters combination. From the experimental study the optimum values of parameters for MRR and ROC are found to be, voltage of 40 V, Graphite powder concentration 1.25% by weight, duty factor 70% and tool rotation of 500 rpm. From the microscopic images of the machined surface, presence graphite powder in electrolyte has improved the machined features due to its conductive nature.


2014 ◽  
Vol 592-594 ◽  
pp. 467-472 ◽  
Author(s):  
M. Kalaimathi ◽  
G. Venkatachalam ◽  
Neil Pradeep Makhijani ◽  
Ankit Agrawal ◽  
M. Sivakumar

Monel 400 is a cuprous nickel alloy which is very well-known for its resistivity towards physical and chemical strength. It is probably one of the hardest and most non-corrosive materials known in industrial as well as research field. These properties have enhanced its applications in various fields such as aerospace industries, marine industries, automotive industries etc. Monel 400 alloys are too hard to machine using conventional machine tools and methods as it work hardens rapidly on its surface. Authors concluded that electrochemical machining is the choice of machining of these materials. The present work is carried out to analyze the impact of ECM process parameters such as applied voltage (V), inter-electrode gap (IEG) and electrolyte concentration (EC) on material removal rate (MRR) and surface roughness (Ra). An aqueous sodium nitrate (NaNO3) is used as basic electrolyte in the electrochemical machining of Monel 400 alloys. Response surface methodology (RSM) based central composite design (CCD) is used as experimental strategy. Effects of process parameters as well as their interactions are analysed and the process parameters are optimized.


2021 ◽  
Author(s):  
Mobina Movahedi

Additive manufacturing (AM), 3D printing, is defined as a process of depositing materials layer by layer to create three-dimensional printed models, as opposed to subtractive manufacturing methodologies. It has the potential of revolutionizing field of manufacturing, which allows us to create more complex geometries with lower cost and faster speed in comparison to injection molding, compression forming, and forging. Therefore, 3D printing can shorten the design manufacturing cycle, reduce the production cost, and increase the competitiveness. Due to the improvements of processes and advancements of modeling and design, Fused Deposition Modeling (FDM) technologies, a common 3D printing technique, have been involved in wide various applications in the past three decades and numerous studies have been gathered. This research work studies directional properties of FDM 3D printed thermoplastic parts per ASTM D638. Tensile strength and modulus of the coupons along and perpendicular to the printing direction are evaluated. It is observed that FDM 3D printing introduces anisotropic behavior to the manufactured part, e.g. tensile strength of 57.7 and 30.8 MPa for loading along and perpendicular to the printing direction, respectively. FDM 3D printers are not ideal and introduce defects into the manufactured parts, e.g. in the form of missing material, gap. This study investigates the impact of gaps on tensile strength and modulus of 3D printed parts. A maximum reduction of 20% in strength is found for a gap (missing bead) along the loading direction.


2021 ◽  
Author(s):  
Mobina Movahedi

Additive manufacturing (AM), 3D printing, is defined as a process of depositing materials layer by layer to create three-dimensional printed models, as opposed to subtractive manufacturing methodologies. It has the potential of revolutionizing field of manufacturing, which allows us to create more complex geometries with lower cost and faster speed in comparison to injection molding, compression forming, and forging. Therefore, 3D printing can shorten the design manufacturing cycle, reduce the production cost, and increase the competitiveness. Due to the improvements of processes and advancements of modeling and design, Fused Deposition Modeling (FDM) technologies, a common 3D printing technique, have been involved in wide various applications in the past three decades and numerous studies have been gathered. This research work studies directional properties of FDM 3D printed thermoplastic parts per ASTM D638. Tensile strength and modulus of the coupons along and perpendicular to the printing direction are evaluated. It is observed that FDM 3D printing introduces anisotropic behavior to the manufactured part, e.g. tensile strength of 57.7 and 30.8 MPa for loading along and perpendicular to the printing direction, respectively. FDM 3D printers are not ideal and introduce defects into the manufactured parts, e.g. in the form of missing material, gap. This study investigates the impact of gaps on tensile strength and modulus of 3D printed parts. A maximum reduction of 20% in strength is found for a gap (missing bead) along the loading direction.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
T. Praveena Gopinath ◽  
J. Prasanna ◽  
C. Chandrasekhara Sastry ◽  
Sandeep Patil

Abstract An attempt has been made to study the influence of magnetic field on the micro hole machining of Ti-6Al-4V titanium alloy using electrochemical micromachining (ECMM) process. The presence of magneto hydro dynamics (MHD) is accomplished with the aid of external magnetic field (neodymium magnets) in order to improve the machining accuracy and the performance characteristics of ECMM. Close to ideal solution for magnetic and nonmagnetic field ECMM process, the parameters used are as follows: concentration electrolyte of 15 g/l; peak current of 1.35 A; pulse on time of 400 s; and duty factor of 0.5. An improvement of 11.91–52.43% and 23.51–129.68% in material removal rate (MRR) and 6.03–21.47% and 18.32–33.09% in overcut (OC) is observed in ECMM of titanium alloy under the influence of attraction and repulsion magnetic field, respectively, in correlation with nonmagnetic field ECMM process. A 55.34% surface roughness factor reduction is ascertained in the hole profile in magnetic field-ECMM in correlation with electrochemical machined titanium alloy under nonmagnetic field environment. No machining related stress is induced in the titanium alloy, even though environment of electrochemical machining process has been enhanced with the presence of magnetic field. A slight surge in the compressive residual factor, aids in surge of passivation potential of titanium alloy, resulting in higher resistance to outside environment.


Author(s):  
Zhaolong Li ◽  
Bingren Cao

Background: High-temperature alloy such as nickel-based alloy has become the main material for core components such as aero engines due to their high strength and good toughness. Therefore, it is of great significance to study how to improve the machining accuracy and stability of electrochemical machining (ECM) of deep small holes on the nickel-based alloy. The instantaneous high-density current during the pulse width of pulse ECM is beneficial to the dissolution of metal workpieces. Many experts and scholars have studied the pulse ECM of deep small holes. Objective: The purpose of this article is to propose and design a Positive And Negative Pulse (PANP) power supply to study the accuracy and stability of ECM of deep small holes on nickel-based alloys. Methods: First of all, an H-bridge composed of four MOSFET switches is designed to achieve PANP output in the main circuit of the power supply. Then, this paper studies the influence of the ratio of positive and negative pulses on short circuits, the influence of the ratio of positive and negative pulses on the mass removal rate, and the influence of the electrolyte concentration and pulse width on the mass removal rate. Finally, according to the obtained optimal parameters, the influence of electrolyte pressure on the average radial overcut of hole depth is analyzed. Results: The experimental results showed that the short-circuit frequency is reduced by more than 50% compared with non-negative pulse power supply; the ratio of positive and negative pulses, pulse width and electrolyte concentration and pressure were optimized by experiments to improve the mass removal rate of the workpiece and the average radial overcut of hole depth. Conclusion: The designed PANP power supply can improve the machining accuracy and stability of ECM of deep small holes on nickel-based alloys.


Author(s):  
Amresh Kumar ◽  
Neelkanth Grover ◽  
Alakesh Manna ◽  
Raman Kumar ◽  
Jasgurpreet Singh Chohan ◽  
...  

AbstractAluminum hybrid composites have the potential to satisfy emerging demands of lightweight materials with enhanced mechanical properties and lower manufacturing costs. There is an inclusion of reinforcing materials with variable concentrations for the preparation of hybrid metal matrix composites to attain customized properties. Hence, it is obligatory to investigate the impact of different machining conditions for the selection of optimum parameter settings for aluminum-based hybrid metal matrix composite material. The present study aims to identify the optimum machining parameters during wire electrical discharge machining of samples prepared with graphite, ferrous oxide, and silicon carbide. In the present research work, five different process parameters and three response parameters such as material removal rate, surface roughness, and spark Gap are considered for process optimization. Energy-dispersive spectroscopy and scanning electron microscopy analysis reported the manifestation of the recast layer. Analytical hierarchy process and genetic algorithm have been successfully implemented to identify the best machining conditions for hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document