Improvement in the performance with less stiff air layer formation around the rubber tube-pasted grinding wheel

Author(s):  
Spandan Guha ◽  
Partha Protim Das ◽  
Shankar Chakraborty

In the grinding operation, a stiff layer of air gets formed around the periphery of the grinding wheel that causes deterioration of its performance. In the present work, in order to restrict the generation of stiff air layer around the periphery of the grinding wheel, a rubber tube is pasted on its surface to improve the grinding performance. An experimental investigation is carried out with low alloy steel as the work material. Taguchi's L9 orthogonal array is considered for the design of experiments while taking cutting speed, depth of cut, and type of the cutting fluid as the input grinding parameters. A comparative analysis using rubber tube-pasted grinding wheel and normal grinding wheel reveals that the developed wheel significantly improves the grinding performance with respect to surface roughness, amplitude of vibration and grinding ratio, as compared to the normal wheel. Moreover, grey relational analysis aided with fuzzy logic is applied in the experimental results to derive the optimal combination of process parameters for further enhancement of the grinding performance. Finally, analysis of variance results identify cutting speed as the most significant parameter while grinding with normal wheel, whereas depth of cut appears to be the most important parameter while machining with rubber tube-pasted grinding wheel.

2021 ◽  
Vol 12 (4) ◽  
pp. 5324-5346

Due to traditional mineral oils' adverse environmental and health effects, vegetable oil-based cutting fluids have become widely attractive in machining. The majority of the vegetable oils used in literature are edible and may compete with human consumption if promoted, thereby making it more expensive as cutting fluids. However, few studies have been carried out on the applicability of lesser-known vegetable oils as cutting fluids. This study, therefore, aims at investigating the efficiency of lesser-known vegetable oil (watermelon oil) as a machining cutting fluid. The developed watermelon oil was mechanically compared to the traditional mineral oil in turning AISI 1525 steel based on cutting temperature, surface roughness, and chip formation mode. The experiment depended on Taguchi plan with L9 orthogonal arrangement utilizing feed rate, depth of cut, and cutting speed as critical input parameters. Moreover, the grey relational analysis optimization approach was employed to analyze the parameter impacts and achieve the best possible cutting parameters. The optimization showed that the best combinations of cutting parameters for cutting speed, feed rate, and depth of cut were (355 rev/min, 0.1 mm/rev and 1 mm), and (355 rev/min, 0.1 mm/rev, and 1.25 mm) for watermelon and mineral oils, respectively.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
S. H. Tomadi ◽  
J. A. Ghani ◽  
C. H. Che Haron ◽  
M. S. Kasim ◽  
A. R. Daud

The main objective of this paper is to investigate and optimize the cutting parameters on multiple performance characteristics in end milling of Aluminium Silicon alloy reinforced with Aluminium Nitride (AlSi/AlN MMC) using Taguchi method and Grey relational analysis (GRA). The fabrication of AlSi/AlN MMC was made via stir casting with various volume fraction of particles reinforcement (10%, 15% and 20%). End milling machining was done under dry cutting condition by using two types of cutting tool (uncoated & PVD TiAlN coated carbide). Eighteen experiments (L18) orthogonal array with five factors (type of tool, cutting speed, feed rate, depth of cut, and volume fraction of particles reinforcement) were implemented. The analysis of optimization using GRA concludes that the better results for the combination of lower surface roughness, longer tool life, lower cutting force and higher material removal could be achieved when using uncoated carbide with cutting speed 240m/min, feed 0.4mm/tooth, depth of cut 0.3mm and 15% volume fraction of AlN particles reinforcement. The study confirmed that with a minimum number of experiments, Taguchi method is capable to design the experiments and optimized the cutting parameters for these performance characteristics using GRA for this newly develop material under investigation.


Author(s):  
P. Lakshmikanthan ◽  
B. Prabu

This study investigates the optimization of CNC turning operation parameters for Al6061 nickel coated graphite (NCG) metal matrix composite using the Taguchi based grey relational analysis method. The turning operations are carried out with carbide cutting tool inserts. According to the Taguchi quality concept, 3-level orthogonal array was chosen for the experiments. The experiments are conducted at three different cutting speeds (125, 175, 225m/min) with feed rates (0.1, 0.15, 0.2mm/rev) and depth of cut (0.5, 1, 1.5mm) and different % of reinforcement (2.5%, 5%, 7.5%), signal to noise ratio and the analysis of variance are used to optimize cutting parameters. The effects of cutting speed, feed rate and depth of cut on surface roughness and MRR are analyzed. Mathematical models are developed by using the response surface method to formulate the cutting parameters experimental results shown that machining performance can be improved effectively by using this approach, the analysis of variance (ANOVA) is applied to identify the most significant factor for the turning operations according to the weighted sum grade of the GRG. The predict responses shows the models have more than 95% of confident level of R2 value, from the obtained confirmation experiment result, it is observed, there is a good agreement between the estimated value and the experimental value of the grey relational grade. This experimental study reveals that the grey-Taguchi and RSM can be applied successfully for multi response characteristic performances.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 453 ◽  
Author(s):  
S. Dhanalakshmi ◽  
T. Rameshbabu

LM 25 is an aluminum alloy that has numerous applications such as in the manufacturing of automobile components and food industries, and especially in marine and seawater applications, due to its exceptional properties. An exertion has been taken for attaining the best-suited group of machining variables to attain improved and better performance in machining such as increased rate of material removal, lessened roughness values at the machined surface and the total cost incurred during machining. Taguchi’s design methodology has been implemented for devising the experimental combinations and also for single aspects optimization of deemed performance measures. Grey’s theory concept has been adopted for attaining Grey Relational Coefficient values and the values have been further utilized for evolving Grey Relational Grade. Analysis of Variance (ANOVA) has been employed to determine the significance of input process variables on the desired performance measures and interaction analysis also has been performed to determine the interaction effect between the selected process variables. As a result of optimization, the optimal combination of cutting parameters in turning LM25 aluminum alloy is cutting speed (A) = 150.79 m/min, feed (B) = 0.15 mm/min, depth of cut (C) = 0.9 mm and cutting fluid flow rate (D) = 75 mL/h. Compared with the initial parameter settings, surface roughness (Ra) decreases by 67.97%, material removal rate (MRR) increases by 88.12% and total machining cost (TMC) decreases by 93.86%. The proposed approach helps the manufacturer to attain better machining performance at an affordable cost.


2014 ◽  
Vol 6 ◽  
pp. 280313 ◽  
Author(s):  
Kaining Shi ◽  
Dinghua Zhang ◽  
Junxue Ren ◽  
Changfeng Yao ◽  
Yuan Yuan

This paper studied an effective method based on Taguchi's method with the grey relational analysis, focusing on the optimization of milling parameters on surface integrity in milling TB6 alloy. The grey relational grade that is derived from the grey relational analysis is mainly used to determine the optimum cutting process operations with multiple performance characteristics. Specifically, surface roughness (Ra), hardness, and residual stress were important characteristics in surface integrity of milling TB6 alloy. Based on the combination of these multiple performance characteristics, the feed per tooth, cutting speed, and depth of cut were optimized in this study. Additionally, the analysis of variance (ANOVA) was also applied to determine the most significant factor for the surface integrity of milling TB6 alloy according to the contribution of the ANOVA, and the most significant factor is the cutting speed in this paper. Based on the analysis, the experimental test results have been improved prominently through the grey relational analysis. Hence this method can be an effective approach to enhance the surface integrity of milling TB6 alloy.


2014 ◽  
Vol 592-594 ◽  
pp. 620-624
Author(s):  
Sumit Verma ◽  
Hari Singh

The present study investigates the optimization of multiple responses in turning of EN-8 steel by the Taguchi and grey relational analysis. The performance characteristics considered are tangential force, feed force and radial force. Grey relational theory is adopted to determine the best process parameters that give lower magnitude of tangential, feed, radial forces and optimal cutting parameters. An orthogonal array L18 is used for the experimental design. The setting of process parameters— nose radius, 0.8mm; cutting speed, 60.65 m/min; feed rate, 0.04 mm/rev; and depth of cut, 0.60 mm— has highest grey relational grade and therefore produces best turning performance in terms of cutting forces.


Author(s):  
Shen-Jenn Hwang ◽  
Yi-Hung Tsai

The present study propose an innovative turn-boring operation method and focuses on finding optimal turn-boring process parameters for 15-5PH Stainless steel by considering multiple performance characteristics using Taguchi orthogonal array with the grey relational analysis, the effect of machining variables such as concentration of cutting fluid , temperature of cutting fluid , feed rate, depth of cut and cutting speed are optimized with considerations of multiple performance characteristics namely surface roughness, roundness error and material removal rate, the optimal values were found out from the Grey relational grade. The result of the Analysis of Variances (ANOVA) is shown that the most significant factor is cutting speed, followed by feed rate, concentration of cutting fluid, radial depth of cut and temperature of cutting fluid. Finally, confirmation tests were carried out to make a comparison between the experimental results and developed model. Experimental results have shown that machining performance in the turn-boring process can be improved effectively through this approach.


Author(s):  
A. Pandey ◽  
R. Kumar ◽  
A. K. Sahoo ◽  
A. Paul ◽  
A. Panda

The current research presents an overall performance-based analysis of Trihexyltetradecylphosphonium Chloride [[CH3(CH2)5]P(Cl)(CH2)13CH3] ionic fluid mixed with organic coconut oil (OCO) during turning of hardened D2 steel. The application of cutting fluid on the cutting interface was performed through Minimum Quantity Lubrication (MQL) approach keeping an eye on the detrimental consequences of conventional flood cooling. PVD coated (TiN/TiCN/TiN) cermet tool was employed in the current experimental work. Taguchi’s L9 orthogonal array and TOPSIS are executed to analysis the influences, significance and optimum parameter settings for predefined process parameters. The prime objective of the current work is to analyze the influence of OCO based Trihexyltetradecylphosphonium Chloride ionic fluid on flank wear, surface roughness, material removal rate, and chip morphology. Better quality of finish (Ra = 0.2 to 1.82 µm) was found with 1% weight fraction but it is not sufficient to control the wear growth. Abrasion, chipping, groove wear, and catastrophic tool tip breakage are recognized as foremost tool failure mechanisms. The significance of responses have been studied with the help of probability plots, main effect plots, contour plots, and surface plots and the correlation between the input and output parameters have been analyzed using regression model. Feed rate and depth of cut are equally influenced (48.98%) the surface finish while cutting speed attributed the strongest influence (90.1%). The material removal rate is strongly prejudiced by cutting speed (69.39 %) followed by feed rate (28.94%) whereas chip reduction coefficient is strongly influenced through the depth of cut (63.4%) succeeded by feed (28.8%). TOPSIS significantly optimized the responses with 67.1 % gain in closeness coefficient.


Author(s):  
MAHIR AKGÜN

This study focuses on optimization of cutting conditions and modeling of cutting force ([Formula: see text]), power consumption ([Formula: see text]), and surface roughness ([Formula: see text]) in machining AISI 1040 steel using cutting tools with 0.4[Formula: see text]mm and 0.8[Formula: see text]mm nose radius. The turning experiments have been performed in CNC turning machining at three different cutting speeds [Formula: see text] (150, 210 and 270[Formula: see text]m/min), three different feed rates [Formula: see text] (0.12 0.18 and 0.24[Formula: see text]mm/rev), and constant depth of cut (1[Formula: see text]mm) according to Taguchi L18 orthogonal array. Kistler 9257A type dynamometer and equipment’s have been used in measuring the main cutting force ([Formula: see text]) in turning experiments. Taguchi-based gray relational analysis (GRA) was also applied to simultaneously optimize the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]). Moreover, analysis of variance (ANOVA) has been performed to determine the effect levels of the turning parameters on [Formula: see text], [Formula: see text] and [Formula: see text]. Then, the mathematical models for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) have been developed using linear and quadratic regression models. The analysis results indicate that the feed rate is the most important factor affecting [Formula: see text] and [Formula: see text], whereas the cutting speed is the most important factor affecting [Formula: see text]. Moreover, the validation tests indicate that the system optimization for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) is successfully completed with the Taguchi method at a significance level of 95%.


2017 ◽  
Vol 882 ◽  
pp. 36-40
Author(s):  
Salah Gariani ◽  
Islam Shyha ◽  
Connor Jackson ◽  
Fawad Inam

This paper details experimental results when turning Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. The effects of coolant concentration and working conditions on tool flank wear and tool life were evaluated. L27 fractional factorial Taguchi array was employed. Tool wear (VBB) ranged between 28.8 and 110 µm. The study concluded that a combination of VOs based cutting fluid concentration (10%), low cutting speed (58 m/min), feed rate (0.1mm/rev) and depth of cut (0.75mm) is necessary to minimise VBB. Additionally, it is noted that tool wear was significantly affected by cutting speeds. ANOVA results showed that the cutting fluid concentration is statistically insignificant on tool flank wear. A notable increase in tool life (TL) was recorded when a lower cutting speed was used.


Sign in / Sign up

Export Citation Format

Share Document