Theory of critical distances: A discussion on concepts and applications

Author(s):  
Cristiana Delprete ◽  
Luigi Gianpio Di Maggio ◽  
Raffaella Sesana

Theory of Critical Distances (TCD) collects several methods adopted in failure prediction of components provided with stress concentration features. The idea of evaluating stress effect in a zone rather than in a single point was proposed decades ago but, only thanks to relatively recent works, TCD concepts showed to be a successful extension of Linear Elastic Fracture Mechanics (LEFM), able to assess strength and fatigue life. The increasing computational power has made Finite Element Method (FEM) widespread, hence stress fields can be easily extracted and used as input data for fatigue post-processing and durability analyses. In this scenario, TCD reveals as a powerful tool which, thanks to the introduction of a single material parameter (critical distance, [Formula: see text]), integrates classical fracture models by considering the presence of microscale phenomena acting in fracture process. In this sense, TCD behaves as a link between continuum mechanics and LEFM. Modalities and reasons for this connection to occur are interesting points of further investigations. Literature on TCD and its theoretical-experimental background is quite extended, nevertheless few industrial applications are available in literature to the best of authors’ knowledge. In this paper, an overview of concepts and applications related to TCD are reported highlighting the relevance of theoretical arguments in actual applications.

2011 ◽  
Vol 462-463 ◽  
pp. 663-667 ◽  
Author(s):  
Ruslizam Daud ◽  
Ahmad Kamal Ariffin ◽  
Shahrum Abdullah ◽  
Al Emran Ismail

This paper explores the initial potential of theory of critical distance (TCD) which offers essential fatigue failure prediction in engineering components. The intention is to find the most appropriate TCD approach for a case of multiple stress concentration features in future research. The TCD is based on critical distance from notch root and represents the extension of linear elastic fracture mechanics (LEFM) principles. The approach is allowing possibilities for fatigue limit prediction based on localized stress concentration, which are characterized by high stress gradients. Using the finite element analysis (FEA) results and some data from literature, TCD applications is illustrated by a case study on engineering components in different geometrical notch radius. Further applications of TCD to various kinds of engineering problems are discussed.


2019 ◽  
Vol 969 ◽  
pp. 315-320
Author(s):  
Vaibhav Sonkar ◽  
Somnath Bhattacharya ◽  
Kamal Sharma

The investigation of static crack and its growth is essential issue as to confirm reliability and to avoid catastrophic consequences which leads to the loss of life in case of engines, reactors, aerospace other industrial applications since most of the failures start from the crack. In this study, an edge crack in 3D elastic functionally graded material (FGM) is solved by extended finite element method (XFEM). Linear elastic fracture mechanics (LEFM) theory is used to determine the stresses near the crack front. Stress intensity factor (SIF) is calculated using interaction integral at the crack front.


2006 ◽  
Vol 306-308 ◽  
pp. 31-36
Author(s):  
Zheng Yang ◽  
Wanlin Guo ◽  
Quan Liang Liu

Stress and strain singularity at crack-tip is the characteristic of Linear Elastic Fracture Mechanics (LEFM). However, the stress, strain and strain energy at crack-tip may be infinite promoting conflicts with linear elastic hypothesis. It is indicated that the geometrical nonlinear near the crack-tip should not be neglected for linear elastic materials. In fact, the crack-tip blunts under high stress and strain, and the singularity vanishes due to the deformation of crack surface when loading. The stress at crack-tip may still be very high even though the singularity vanishes. The low bound of maximum crack-tip stress is the modulus of elastic in plane stress state, while in plain strain state, it is greater than the modulus of elastic, and will increase with the Poisson’s ratio.


2005 ◽  
Vol 297-300 ◽  
pp. 521-526
Author(s):  
Insu Jeon ◽  
Masaki Omiya ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto ◽  
Tadashi Asahina

A new specimen is proposed to measure the interfacial toughness between the Al-0.5%Cu thin film and the Si substrate. The plain and general micro-fabrication processes are sufficient to fabricate the specimen. With the help of the finite element method and the concepts of the linear elastic fracture mechanics, the detailed structure for this specimen is modeled and evaluated. The results obtained from this research show that the proposed specimen provides efficient and convenient method to measure the interfacial toughness between the Al-Cu thin film and the Si substrate.


2014 ◽  
Vol 606 ◽  
pp. 209-212
Author(s):  
Luboš Náhlík ◽  
Bohuslav Máša ◽  
Pavel Hutař

This paper deals with the fracture behaviour of layered ceramic composite with residual stresses. The main goal is to investigate the effect of residual stresses and material interfaces on crack propagation by more complex 3D finite element models. The crack behaviour was described by analytical procedures based on linear elastic fracture mechanics (LEFM) and generalized LEFM. The influence of laminate composition with residual stresses on critical values for crack propagation through the laminate interfaces was also determined. Good agreement has been found to exist between numerical results and experimental data. The results obtained can be used for a design of new layered composites with improved resistance against crack propagation.


Sign in / Sign up

Export Citation Format

Share Document